
Distributed Security Infrastructure (DSI)

Copyright c© http://sourceforge.net/projects/disec

REVIEW, Version 0.3

September 17, 2003

This document covers general information, technical details and basic scenarios to in-

stall and use Distributed Security Infrastructure. It also discusses the internals of the

Distributed Security Infrastructure, the Distributed Security Policy, and the Distributed

Confidentiality and Integrity mechanisms.

Legal Notice

All source code in this document is placed under the GNU General Public License.

ii

Preface

The telecommunication industry’s interest in clustering comes from the fact that

clusters address carrier-class characteristics such as guaranteed service availability,

reliability and scaled performance, using cost-effective hardware and software. These

carrier-class characteristics have evolved with time to include requirements for ad-

vanced levels of security. However, only few efforts currently exist to build a coherent

secure framework over clustered systems. Most of the time, clusters’ administrators

are left with no other choice than to integrate several partial solutions. Consequently,

they often end up struggling with solutions’ management, interoperability and nu-

merous patches.

To solve this problem, Ericsson Research has decided to launch an Open Source

project, named Distributed Security Infrastructure (DSI). DSI focuses on distributed

security frameworks for real-time distributed software applications that run on large-

scale carrier-class Linux clusters. This work is hosted as an Open Source project at

SourceForge (http://sourceforge.net/projects/disec).

In this documentation, we present the rationale behind developing a new architecture

named the Distributed Security Infrastructure (DSI). We describe the main elements

of this architecture and discuss our preliminary results.

DSI supports different security mechanisms to address the needs of telecom appli-

cation servers running on Linux clusters. DSI provides distributed mechanisms for

access control services, authentication services, integrity of communications and au-

diting services.

Conventions used in this Book

The following is a list of the typographical conventions used in this book.

type font refers to source code or command

line input.

Throughout the text there are references to pieces of code (for example the boxed

margin note adjacent to this text). These are given in case you wish to look at the
See foo() in

foo/bar.c
source code itself.

Developers

• Makan Pourzandi (Ericsson Research Canada)

• Axelle Apvrille (Ericsson Research Canada)

iii

iv

• David Gordon (Sherbrooke University)

• Alain Patrick Medenou (Polytechnique de Montreal)

• Philippe Conan (Polytechnique de Montreal)

Past contributors

• Prof. Michel Dagenais (Polytechnique de Montreal)

• Eric Gingras (UQAM)

• Gabriel Ioan Ivascu (Polytechnique de Montreal)

• Charles Levert (Ericsson Research Canada)

• Jean-Guillaume Paradis (Sherbrooke University)

• Dominic Pellerin (Sherbrooke University)

• Vincent Roy (Sherbrooke University)

• Sam Yan (Sherbrooke University)

• Miroslaw Zakrzewski (Ericsson Research Canada)

Contents

Preface iii

1 Introduction 1

1.1 The Need for a New Approach . 1

1.2 Requirements for DSI . 2

1.2.1 Generic carrier-class requirements 2

1.2.2 Attack resistance requirements 3

1.2.3 Other requirements . 3

2 Architecture 5

2.1 A distributed architecture . 5

2.1.1 Overview of components . 5

2.1.2 Security Server (SS) . 6

2.1.3 Security Manager (SM) . 7

2.1.4 Secure Communication Channel (SCC) 8

2.2 A service based approach . 9

3 Installation 11

3.1 Requirements . 11

3.2 Linux Security Module kernel patch 11

3.2.1 Applying the LSM patch and recompiling the kernel 11

3.3 OpenSSL . 13

3.3.1 Installing OpenSSL . 13

3.3.2 Creating certificates for DSI . 13

3.4 CORBA . 13

3.4.1 Compiling OmniORB and OmniEvents 14

3.4.2 OmniORB config file . 15

3.4.3 OmniORB troubleshooting . 15

3.5 XML . 15

3.6 DSI . 16

3.6.1 Installing DSI . 16

3.6.2 Advanced configuration of DSI 16

v

vi CONTENTS

3.6.3 Sending commands directly to DSM module 17

3.6.4 Troubleshooting DSI Installation 17

3.6.5 Troubleshooting DSM . 18

4 Setting up a sample scenario for DSI 21

4.1 A lightweight scenario setup . 21

4.2 A more realistic scenario: DisCI over UDP 23

4.2.1 IP addresses . 24

4.2.2 CORBA setup . 24

4.2.3 DSP setup . 25

4.2.4 Load DSM . 26

4.2.5 Start the security servers and managers 26

4.2.6 Start your UDP applications 27

4.2.7 Changing the DSP through the cluster 28

4.3 Other scenarios . 28

5 Distributed Security Module 29

5.1 Kernel Socket Functions . 29

5.2 Socket Permissions and Alarms . 29

5.3 Allocation of Security Structure in Kernel Memory 29

5.4 Speeding up policy rule matches . 30

5.5 Restrictive/Permissive rule enforcement in DSM 30

5.5.1 Global recommendation . 31

5.6 Structure locking in DSM . 32

5.7 New System Call: sys security . 32

5.8 Format of rules in DSM . 33

6 Distributed Access Control service (DisAC) 35

6.1 Introduction to Mandatory Access Control vs Discretionary Access

Control . 35

6.2 Access control for processes using ScIDs 35

6.2.1 Cluster-wide access control for DisAC 36

6.2.2 Categorizing binaries for an easier management 36

6.2.3 Access control at kernel level 37

7 Policy configuration file 39

7.1 Distributed Policy File . 39

7.1.1 Security rules . 39

7.1.2 DSP structure . 43

7.2 Parsing of the DSP . 44

7.2.1 Parser specification . 44

CONTENTS vii

7.2.2 Parsing the security rules . 45

7.3 Updating the policy . 46

7.3.1 Modifying the DSP . 46

7.3.2 Loading the DSP . 48

8 Secure Communication Channels 49

8.1 Events . 49

8.1.1 General format of events: XML 49

8.1.2 XML Namespace . 49

8.1.3 Heart beat event . 50

8.1.4 Update policy event . 50

8.1.5 The DSM Rule event . 50

8.1.6 Alarm and Warning events . 51

8.2 Parsing dispatched XML events . 52

8.3 Integration of SSL in secure channels 52

9 Distributed Confidentiality and Integrity service (DisCI) 53

9.1 Introduction . 53

9.2 The rationale . 53

9.3 Advantages/disadvantages of using DisCI 53

9.4 How to use DisCI? . 54

9.5 Destination IP address modification 54

9.5.1 Modification during connection establishment 54

9.5.2 Modification without connection establishment 54

9.6 Source IP address modification . 55

9.6.1 Modification with connection establishment 55

9.6.2 Modification without connection establishment 55

9.6.3 UDP IP transition during an active connection 55

9.6.4 TCP IP transition difficulties 56

9.7 IP Options Modification . 57

9.8 Digital Signatures . 58

9.9 Open Questions . 58

9.9.1 User Mode Linux . 58

9.9.2 Freeswan1.96 . 59

9.10 DisCI Conclusion . 59

10 Integrity service 61

10.1 Introduction . 61

10.2 Levels of digital signature verification 61

viii CONTENTS

11 Tools 63

11.1 DciInit . 63

11.2 UpdatePolicy . 63

11.3 dsiUpdatePolicy . 63

11.4 ChangeProcSID . 64

11.5 SetSID . 64

11.6 SS Console . 64

11.7 SetNodeID . 64

11.8 ls dsi . 64

11.9 ps dsi . 65

11.10PrintPolicy . 66

12 Testing DSI 67

12.1 Client Server Test Programs . 67

12.2 DSM filesystem testing . 67

12.3 DSM unit testing . 68

12.4 DSM automatic scenario testing . 68

12.5 DisCI functionality tests . 69

12.5.1 Context . 69

12.5.2 Steps to Verify DisCI Functionality 70

12.5.3 Integration Tests . 72

13 Debugging DSM 73

13.1 dsi debug.h . 73

13.2 Buffering and printk . 73

14 Benchmarking DSI 75

14.1 LMBench results . 75

14.2 DisCI Benchmarks . 76

14.2.1 Dgram . 76

14.2.2 Dgramresp . 77

References 79

Glossary 81

Bibliography 82

Chapter 1

Introduction

In this chapter, we discuss different characteristics of DSI and the neces-

sity of using a new approach to security.

1.1 The Need for a New Approach

Numerous domains make use of services with high availability, reliability and scala-

bility. For instance, on a practical point of view for telecoms, having emergency lines

(9-1-1) out of service - even temporarily - would probably seem absolutely unaccept-

able to everyone.

To ensure high availability for such applications, the telecommunication industry

uses clusters, i.e. a group of loosely coupled machines. However, carrier-class char-

acteristics have evolved and now require additional requirements such as advanced

levels of security.

To do so, many security solutions exist ranging from external solutions, such as

firewalls to internal solutions such as integrity checking software.

Unfortunately, there are no dedicated solutions to clusters: all of them are based on

a single node approach, and consequently lack a homogeneous view of the cluster.

For instance, on clusters, this raises the following problems:

• each node has to set its permissions individually, but coherently to other ma-

chines. If a single node offers wider rights, or is not up-to-date, this may result

in a security breach for the whole cluster.

• telecom clusters usually running the same application for a long period without

interruption, under a same username, there is virtually no authentication of

tasks. For instance, at Figure 1.1, process a wishes to access resources on node

2. It therefore makes a remote access to node 2’s security manager (process

b). If process b is allowed to access the resource, then access is granted: access

control is granted according to process b but not according to process a. This

is not coherent.

Most of the time, to cope with this homogeneity issue, administrators have no other

choice than to package, integrate, patch and manage together several existing security

solutions. This leads to an increased difficulty of management, and very often to a

decrease in security as interoperability issues are raised and errors occur.

1

2 Chapter 1. Introduction

Figure 1.1: Current access control approach on clusters

Moreover, carrier-class clusters have tight restrictions on performance and response

time, and in fact, many security solutions cannot be used due to their high resource

consumption.

DSI tries to solve those problems by proposing a homogeneous security infrastructure

for large-scale clusters running real-time distributed carrier-grade applications. As

Linux provides a free reliable basis for telecom servers many on going projects have

started using it [12, 16], and DSI too, has chosen to focus first on Linux.

1.2 Requirements for DSI

1.2.1 Generic carrier-class requirements

As part of a carrier-class cluster, DSI should comply with carrier-class requirements

such as:

• a five nines availability (99.999%): clusters should operate non-stop, regardless

of hardware or software errors. Operators should be able to perform upgrades

and maintenance tasks without disturbing running applications.

• reliability

• flexibility is a major requirement for all security solutions adopted by Linux;

security has to do with both technological and legal issues regarding privacy.

For example, the approach to privacy issues is different in Europe and US, not

to mention elsewhere in the world. Therefore, the solution should be flexible

enough to allow its adaptation to different technologies (algorithms, key sizes,

protocols . . .) but also legal environment.

1.2. Requirements for DSI 3

• quality of protection: it should be possible to provide different clients simulta-

neously with different quality of protection. For example, some clients want to

pay for a good quality of protection according to the type of transactions they

handle through their terminals. It is to anticipate that the majority of clients

do not want to pay an extra amount of money for the security. The system

must be able to provide simultaneously different clients with different quality

of protection.

1.2.2 Attack resistance requirements

• access to resources (sockets, inodes . . .) should be granted according to each

process. This is a fine-grained approach based on each individual process.

• authorization to spawn new processes should be controlled, and of course, new

process should not be able to override security permissions that have been

assigned to him.

• processes (from the same or different nodes) should be able to communicate on

secure channels throughout the cluster, according to their needs (confidential-

ity, integrity . . .).

• if malicious code were to run on a node of the cluster, 1/ it should be detected

as fast as possible before it consumes too many resources and 2/ DSI adminis-

trator should be able to enforce immediately a new security policy cutting the

malicious code off all its resources.

1.2.3 Other requirements

• Maximum performance: carrier grade industry is tied by very tight demands on

response time and high availability. Any security solution that cannot satisfy

those demands or in a way forbids the system to answer in a timely manner

is not de facto an acceptable solution to the carrier grade industry. This is

very different from some fields such as the military where security is a top

priority and the client accepts easily long response times. Knowing that, one big

leader in security field is military and alike businesses; many existing security

solutions cannot be used as it is by carrier grade industry. The introduction

of security features must not impose high performance penalties. Performance

can be expected to degrade slightly during the first establishment of a security

context; however, the impact on subsequent accesses must be negligible. As

a reasonable range, the performance degradation should not exceed 10% at

connection setup time, and should not exceed 5% during the data exchange

phase.

• Dynamic security policy: it should be possible to support runtime changes

in the distributed security policy. As carrier class servers nodes must provide

continuous and long-term availability, it is thus impossible to interrupt services

to enforce a new security policy. Pre-emptive security (i.e. the capability to

reflect changes in security contexts immediately) should help achieve that.

• Coherent framework: security policy coherently enforced on all nodes of the

cluster. This means that all security services should fit together to prevent any

4 Chapter 1. Introduction

exploitable security gap, and that they should all have a global understanding

of the whole cluster and not only their node as an independant machine.

• Ease of configuration and use: when security is well understood and easy to

configure, administrators get a better chance to efficiently secure their system.

For instance, cluster’s security should be managable globally, and should not

require node per node administration.

Chapter 2

Architecture

In this chapter, we explain how DSI works, the role of each component

and its interaction with other components.

2.1 A distributed architecture

2.1.1 Overview of components

DSI proposes a distributed security model meant to fit distributed environments

such as clusters. Security components are distributed onto all nodes of the cluster.

Basically, the architecture is made of:

• a security server (SS), which is the central point of management in DSI. It

is the entry point for secure management and information such as alarms or

messages coming from intrusion detection systems from outside the cluster.

It is the central security authority for all the security components in the system.

It is responsible for the cluster’s security policy (also called the distributed

security policy), and broadcasts any changes to all cluster nodes. To avoid a

single point of failure, best use would be to have two security servers (a primary

and a secondary) running the SS on equally hardened nodes, without any other

services.

• multiple security managers (SM) enforcing security in each node of the clus-

ter. Each security managers owns a local copy of the cluster’s security policy

and is responsible for enforcing this policy (and its changes) in the security

environment of the node.

• and a secure communication channel (SCC), which provides an encrypted and

authenticated communication 1) between security server and managers, and 2)

between the security server and the “outside” of the cluster. To avoid rogue

SMs introduced into the system by hackers, security managers only exchange

security information with the security server.

Initially, the administrator assigns each node a security node identifier SnID. All

processes also receive a security context identifier (ScID). ScIDs are global over the

cluster and persistant (they do not change after rebooting the host). Actually, one

5

6 Chapter 2. Architecture

Primary

Security

Server Node

Node 1
 Node 2
 Node 3

DSM

SS

DSM
 DSM

Proc123
 Proc978
 Proc222

K
er

n
el

Secure Communication Channel

Secondary

Data Traffic
In
si

d
e

th
e

C
lu

st
er

Security

and

O&M/IDS

O
u

ts
id

e
th

e
C

lu
st

er

SS
 Security Server

SM
 Security Manager

Authenticated

Encrypted

Communications

SM
SM
SM

DSM
 Distributed

Security Module

Figure 2.1: Distributed Architecture of DSI

should think of SIDs more like security GIDs than PIDs: SIDs are meant to group

together processes that have the same security context. So, contrary to PIDs, SIDs

do not uniquely identify processes but security contexts. Hence, the distributed

security policy simply consists of a list of rules to be applied to a couple of (SnID,

ScID).

It basically states whether such or such group of processes have such or such permis-

sions.

Of course, for security mechanisms to be effective, users should not be able to bypass

them. Hence, the best place to enforce security is at kernel level. Therefore, when

necessary, all security decisions are implemented at kernel level, in the so-called DSI

Security Module (DSM). DSM is a set of kernel hooks enforcing distributed security

policy, and is implemented using LSM [10] as a Linux kernel module.

For instance (see Figure 2.2) when process P tries to bind a socket on port 8800, he

first calls bind() at user level. In turn, bind() uses system call socket bind() at

kernel level. Finally, socket bind() calls specific DSM code that checks, according

to the distributed security policy, whether process P is allowed to bind a socket on

port 8800.

2.1.2 Security Server (SS)

The security server is the reference for all security managers. It is the entry point

for DSI administrators. Its primary tasks include:

• triggering alarms and warnings inside and outside the cluster,

• initiating the SCC to propagate security related information such as distributed

security policy updates, node security status, alarms and warnings. That in-

formation is sent using an event driven approach.

For instance, the security server has the authority to declare a node is compromised,

and push to all other nodes the new security policy that enforces this update.

The security server stores:

2.1. A distributed architecture 7

Figure 2.2: DSI at user and kernel levels.

• the current distributed security policy (DSP),

• a private key, a public key and public key certificate to be used on the SCC.

Those keys and certificates should be generated using any suitable products1,

and administrator should ensure the private key is kept safely on the host.

2.1.3 Security Manager (SM)

The security manager is the component that enforces security on the node.

Before loading a security manager, the administrator should:

1. generate and store (securely) node’d private and public keys

2. get a public key certificate from a certificate authority. If the security server

acts as a certificate authority, then certificates may be retrieved from the secu-

rity server. However this is not required at all, and security managers may use

any certificate authority as long as the security server trusts this authority.

3. assign a security node identifier (SnID) which identifies it uniquely for commu-

nication with the security server. Currently, each node’s SnID is set manually

by the cluster’s administrator using the SetNodeID tool2.

Then, the security manager connects to the SCC using its private and public keys.

The fact that it is able to connect onto the SCC virtually makes the node join

the cluster the security server manages. Of course, to make sure malicious security

managers are not able to join the cluster, security server should require authentication

of managers on the SCC (and same, the SMs should require authentication of the

SS).

Once connected, the security manager:

1Note that there is no need for a certification authority on the security server. Security server’s

certificate can be issued by a larger certification authority such as VeriSign, Thawte, Baltimore,

CertiSign . . .
2This should probably change in the future

8 Chapter 2. Architecture

• receives updates to the distributed security policy whenever there’s a change3,

and is responsible to make the appropriate modifications to its own local copy

of the policy.

• publish any change to security contexts of its local entities involved with remote

entities.

• subscribe to changes in security contexts of remote, related entities.

2.1.4 Secure Communication Channel (SCC)

Please refer to chapter 8 for more details.

The different channels

More precisely, there are multiple different secure communication channels (see see

Figure 2.3), which globally compose what is referred to as the SCC:

1. an alarm channel, which is used to broke alarms. SS sends alarms to SMs, and

SMs send alarms to SS.

2. a warning channel (working the same way).

3. a management channel, also called the “Service” channel, which is used to

broke management information4.

4. a DSP channel, reserved to broke updates of the security policy and different

security policy rules.

5. an Outside channel (named “SecureOM”) to be used for secure communications

with external clusters. Currently, no information is broked by this channel,

however in the future, this could include communication with an external IDS

system for instance.

Security channels are created (and deleted) by the Security Server (§2.1.2), whereas

Security Managers (§2.1.3) subscribe to each one of these channels upon their cre-

ation. 5

Channels’ features

• SCC are based an event driven logic: each channel handles one specific kind

of event (UpdatePolicy, Alarm, Warning...). The benefits of this approach

are that (1) it does not present a single point of failure, and (2) it gives the

possibility of event filtering, therefore less bandwidth is used and less time

is needed for treating irrelevant information before discarding it. Events are

handled by an implementation of OMG Event Services[15] (see figure 2.4).

3SM should also be able to “pull” the current DSP from the SS if necessary. For instance, if

the SM loses the DSP, he should not have to wait for next update to get one. However, this “pull”

mechanism is not implemented yet.
4Currently, this channel is solely used for the SS to send periodically “heart beats” to the SMs.
5For the time being, there is no while loop in order to avoid synchronization problems. Therefore,

the security server must be created before the security managers.

2.2. A service based approach 9

Secure O&M Channel

Alarms Channel

Security Zone Y Channel

Security Zone X Channel

A
PPLICATION
 T
RAFFIC

K
er

ne
l

SS

Primary Security

Server

Node 1

Secondary Security

Server

I
 N
S

ID
E

 C

 LU

S
T

E
R

O

 U
T

S
ID

E

 C

 LU
S

T
E

R

S
ECURITY
 O&M/IDS

Node 2
 Node 3

SM
 SM
 SM

S
u
n

.

.

.

 .

.

.
 .

.

.

.

.

 .

S
P
 A
R
C
 1
 0
S
u
n

SS: Security Server

SM: Security Manager

Authenticatd/Encrypted

Communications

Publish/Subscribe

Events

L
EGEND

Figure 2.3: The various secure communication channels.

• SCC support priority queuing: if an alarm is very important and should be

pushed as fast as possible to the SS (corresponding for instance to an intrusion),

then the alarm event should be sent with the higher alarm priority.

• All communication channels provide authenticated (on both sides) and en-

crypted communications among security components. To achieve this, channels

are built on top of SSL/TLS (see figure 2.4).

SSL/TLS

Event Services + Naming

Services

CORBA

SCC

Figure 2.4: Layered approach of SCC: SCCs are independent of lower level commu-

nication mechanisms, which increase their portability.

2.2 A service based approach

In terms of security, DSI is meant to provide the cluster with the following services

(Figure 2.5):

• an Access Control Service, that will make sure various entities (local, remote

or external nodes) do not have access to unauthorized ressources. On the

cluster, access to ressources is controlled by the distributed security policy,

10 Chapter 2. Architecture

Figure 2.5: DSI Services

which basically grants or refuses access to a given ressource for such and such

entity. See chapter and [?] for more information.

• an Authentication Service that should offer process-level authentication through-

out the cluster. This service has not been implemented yet.

• an Auditing Service that would have the capability of recognizing typical attack

scenarios (and possibly setting up a response strategy) from various alarms and

warnings received by the security server. Design of such a service is currently

under progress (no implementation yet).

• an Integrity Service, responsible for the cluster’s integrity. Actually, this service

is divided in two components: (1) the integrity part of the DisCI component

which is responsible for the integrity of communications between cluster nodes,

and (2) a component checking integrity of resources. (this part has not been

developped yet - see §10).

• a Confidentiality Service, responsible for cluster’s confidentiality. Same as the

integrity service, there are actually two levels of confidentiality. The former con-

cerns confidentiality of communications (and is implemented as part of DisCI).

The latter concerns confidentiality of resource on a node, a topic which hasn’t

been addressed to yet.

• a (Distributed) Security Policy Management module, responsible for reading,

writing and updating the distributed security policy.

Chapter 3

Installation

In this chapter, we discuss the installation of DSI components.

3.1 Requirements

DSI requires:

• the LSM kernel patch (see §3.2) in all cases.

• Xerces-C (see §3.5) in all cases.

• OpenSSL (see §3.3) if you require SSL support for CORBA channels (REC-

OMMENDED).

• OmniORB and OmniEvents (see §3.4), to make the SS and SMs communicate

with each other. However, note that for a quick install, you can test DSI

without installing OmniORB and OmniEvents.

• IPSec, if you want integrity and/or confidentiality between various processes

of the cluster (see DisCI component at chapter 10.1).

• gcc-2.95 or gcc-2.96.

3.2 Linux Security Module kernel patch

First of all, currently, DSI will only work with a 2.4.17 kernel from kernel.org.

Work is currently under progress with 2.4.20 and 2.5.66 kernels.

On top of a 2.4.x kernel, DSI uses LSM hooks for kernel level access control. LSM

can be downloaded as a kernel patch from LSM’s web site:

Kernel Requirements Download Web Site

2.4.17 patch-2.4.17-lsm2.gz http://lsm.immunix.org/lsm download.html

3.2.1 Applying the LSM patch and recompiling the kernel

To apply the patch, you should:

11

12 Chapter 3. Installation

$ cd /usr/src/linux-2.4.17

$ zcat /patchdir/patchfile | patch -p1

Once the patch is applied, you should re-compile the kernel:

$ cd /usr/src/linux-2.4.17

$ cp .config .config.old

$ make config (or menuconfig, or oldconfig, or xconfig)

$ make dep

$ make bzImage

$ make modules

$ make modules_install

$ make install

The following kernel options should be enabled:

Section title Option Choice Reason

Code matu-

rity level op-

tions

Prompt for development and/or

incomplete code/drivers

YES to activate some experimental

options

Loadable

module

support

Set version information on all

module symbols

NO Avoids versioning problems. Ac-

tually, you can say YES but this

will complicate module building

Networking

options

Network packet filtering YES Enables the netfiltering hooks for

IP packet modification

Kernel HTTPD acceleration

(EXPERIMENTAL)

MODULAR Includes the tcp sync mss in the

kernel

Security op-

tions

Capabilities support MODULAR

IP Networking support NO

NSA SELinux Support MODULAR

NSA SELinux Development

Module

YES

NSA SELinux MLS policy (EX-

PERIMENTAL)

NO

LSM port of Openwall (EXPER-

IMENTAL)

NO

Domain and type enforcement

(EXPERIMENTAL)

NO

A few remarks:

• it is usually a good idea to create a symbolic link /usr/src/linux that links

to your current linux directory.

% ln -s /usr/src/linux-2.4.17-lsm /usr/src/linux

• Please note that the patch may not apply correctly on vendor specific kernels.

We suggest you download “standard” kernels from the kernel repository http:

//www.kernel.org.

3.3. OpenSSL 13

3.3 OpenSSL

3.3.1 Installing OpenSSL

OpenSSL is required to compile the secure communication channel (SCC) using

CORBA with ssl features. We only tested SCC with original OpenSSL contrib

downloaded directly from Open SSL web site. Therefore, we advice you to use the

orginal OpenSSL contrib, even if SCC can perfectly work with modified versions of

OpenSSL.

Be careful: by default, some RedHat distributions come with openSSL already in-

stalled, check for previous install in /usr/include/openssl/ssl.h. The version may be

a stripped down version of the real one, so you should install the one that is listed

here.

Requirements Download web site

Latest version of OpenSSL1 www.openssl.org

Once installed (make, make install), the package’s default location is /usr/local/

ssl.

3.3.2 Creating certificates for DSI

For secure communication, DSI requires on each node:

• a file containing a list of trusted CA certificates, in PEM format,

• a file containing the keys and the certificate of the node, in PEM format. It

is important to note that the file must contain both the private key and the

certificate.

Typically, we’d have one key and certificate file per node, and a root CA responsible

for signing each of these certificates (and optionally signed by an upper level CA).

However, the actual architecture of certificates and keys is up to the administrator.

Obviously, the strict minimum is to have one key and certificate file for the security

server, and one for the security managers.

To use DSI, you may either use the dummy files provided in dsi_home/etc or create

your own using any tool of your choice (recommended !). DSI’s installation will

default to the dummy files, but this is configurable.

3.4 CORBA

Secure Communication Channel is based upon CORBA to broke information. We

use Omni ORB implementation for DSI for current version of SCC. However, SCC

provides a portability layer to avoid dependency on specific ORB implementation.

Therefore, it is possible to switch between different ORB implementations with min-

imal effort. As an example, it took a developer a day of work in order to switch from

Mico ORB[20] implementation to OmniORB implementation.

14 Chapter 3. Installation

Requirements Download Web Site

omniORB-4.0.0.tar.gz or

later

http://omniorb.sourceforge.net

omniEvents 2.1.2.tar.gz http://sourceforge.net/projects/omnievents

Table 3.1: Requirements for DSI’s SCC.

3.4.1 Compiling OmniORB and OmniEvents

To build OmniORB, gcc-2.95 (or later) and python are required. Usually, you will

already have python in your machine (check in /usr/local/python for instance).

If not, you may download and install a minimal python from omniORB’s web site

at omniorb.sourceforge.net (named omnipython-i586_linux_2.0_glibc2.

1.tar.gz).

DSI also requires installation of omniEvents, a contribution implementing OMG

Event Services. However, omniEvents evolving slower2 than OmniORB, its compi-

lation is quite tricky:

• omniEvents 2.1.2 does not compile with recent gcc-3.x: you’ll need a gcc-2.9x.

• omniEvents 2.1.2 supports both omniORB 3 and omniORB 4. So, it’s no more

use to make changes in the source code.

You should hence follow these steps:

• download OmniORB(suggested OMNIORB TOP=/usr/local) and decompress

it(tar -xzvf omniORB-4.0.0.tar.gz).

• download OmniEvents, and decompress it in OmniORB’s directory so that it is

to be found in $OMNIORB_TOP/src/contrib/omniEvents (with OMNIORB TOP

being the root directory for OmniORB installation).

• follow the manual building process of OmniORB, i.e, go to $OMNIORB TOP/config,

and modify config.mk to match your platform.

• edit $OMNIORB_TOP/mk/platforms/xxx.mk and set python and openssl’s path.

• make export

• go to src/contrib/omniEvents

• make export

Another solution (neater) is to edit the $OMNIORB TOP/configure.ac file, add the

omniEvents directories that contain a GNUmakefile, run autoconf and automake,

and recompile. Do not forget to compile OmniORB with OpenSSL support

(or your channels will not be secure !).

2No blame meant here !

3.5. XML 15

3.4.2 OmniORB config file

You have to edit the /etc/omniORB.cfg file to add the 2 following lines:

DefaultInitRef corbaname:rir:#services

InitRef NameService=corbaname::172.1.1.1/NameService

Where 172.1.1.1 is the IP of the Security Server (check out §?? for more information).

3.4.3 OmniORB troubleshooting

• if you are using gcc-3.x, omniORB will compile, but not omniEvents. Best

choice currently is to use a platform that has gcc-2.95 or gcc-2.96.

• omniEvents refers to omniORB 3. To compile it with omniORB 4.0, replace

all “ORB3” lines with “ORB4” in source code of omniEvents.

• you might need to create a symbolic link in /usr/include from python to your

own python directory.

• when you type make export in omniEvents’ directory, if you get the following

message:

You have not told me what platform you are using. Please edit

$TOP/config/config.mk to set the platform.

Note that you also need to set the location of Python in the

$TOP/mk/platforms/<platform>.mk file

This means omniORB4 Autoconf file didn’t match with the right platform, so

you have to edit the 2 files mentionned above according to your platform

3.5 XML

All messages exchanged between different security agents (Security server and secu-

rity managers) are written in XML (c.f. §8.1.1).

Also, Distributed Security Policy (DSP) configuration file is written in XML.

Requirements Download Web Site

Xerces-C 2.1.0 or later http://xml.apache.org/xerces-c/index.html

For instance, you may use xerces 2.1.0. To build xerces, you should:

%> create symbolic link: ln -s xerces-c-scrc-2_1_0 xerces

%> export XERCESCROOT=<full-path-to-xerces>

%> cd $XERCESCROOT/src/xercesc

%> autoconf

%> ./runConfigure -plinux -cgcc -xg++ -minmem -nsocket

-tnative -rpthread -P <install-dir>

%> gmake

%> su root

gmake install

16 Chapter 3. Installation

Note: A common error is to forget the ’C’ between XERCES and ROOT...

For more explanations on how to build xerces, it is a good idea to always refer to

http://xml.apache.org/xercesc, as this will contain the most up to date infor-

mation.

3.6 DSI

Download latest DSI from http://sourceforge.net/projects/disec and extract in a

directory. You need root privileges to load the DSM kernel module but you do not

need to be root to run any other component of DSI.

Please note that DSI does not compile on gcc 3.2. Use gcc 2.96 or lower

gcc..

3.6.1 Installing DSI

Make sure that you have installed the required packages (see §3.1). Then, compiling

DSI should be pretty easy as it follows the common “configure and make” strategy:

% ./configure

% make or make --with-ssl=/usr if using the system default SSL.

Our configure script understands the following additional arguments:

• –with-ssl=<ssl directory>

• –with-omniorb=<omniorb directory>

• –with-xerces-c=<xerces directory>

• –with-linux src=<src linux root directory>

• –with-omni platform=<platform> (omniORB platform, see $(OMNI DIR)/mk/platforms

to list them. Default value is i586 linux 2.0 glibc2.1)

• –prefix=<directory> (base directory for installation of DSI, see below.)

If you do not use those arguments, configure will try and find the location of DSI’s

requirements in standard location (such as /usr/local/ssl).

Optionally, you may install the DSI binaries and libraries on your system:

• Make sure you are currently the root user.

• Then run make install. DSI will install its main binaries in <prefix-dir>/bin,

and its libraries in <prefix-dir>/lib. The documentation will be in <prefix-

dir>/share/doc/dsi-<version>

• To uninstall what you just installed, simply type make uninstall.

3.6.2 Advanced configuration of DSI

Table 3.2 should help you to edit the configuration files if you want to change their

default values

3.6. DSI 17

3.6.3 Sending commands directly to DSM module

In the following you need to have root privileges.

In order to send commands to the DSM module, you need to create a character

device dedicated to DSI:

• Load DSM

• Look at /proc/devices, you should see something similar to this : Character

devices:

1 mem

2 pty

3 ttyp

...

254 DSI_module

Block devices:

2 fd

3 ide0

22 ide1

• Note the number near DSI module.

• Make a char device file :

% mknod /dev/DSI_module c major_number 0

• No need to reboot.

You can obtain the major number corresponding to DSI module device from /proc/devices

file.

This character device is used to interact with DSM.

Once the file has been created by mknod command, you can use any tool to write

into the /dev/DSI module device. For example, write down your command line into

a file and cat the file to /dev/DSI module.

As for 2.5.x Linux releases, the security system call will be removed. From then, this

device will be used for communication with DSM module.

3.6.4 Troubleshooting DSI Installation

Cannot find Xerces library, or refuses to compile XML directory

In your Xerces library, check that you have a libxerces-c library. If not, make the

appropriate symbolic link:

%> cd /usr/local/xerces/lib

%> ln -s libxerces-c.so.21.0 libxerces-c

18 Chapter 3. Installation

3.6.5 Troubleshooting DSM

Makefile options

First, in the Makefile, there is an option ’-O2’ specified. This is not just for fanciness.

This option tells the compiler to optimise the code a little, among other things to

resolve inline function references. Functions like ntohs and htonl are declared inline,

which means that they aren’t really functions, but more like macros. For a kernel

module, only the compilation phase is done in userland. The linking process will be

done using kernel symbols once it is loaded in kernel memory. If the ’-O2’ option

is not specified, the symptom will be an unresolved symbol ’nthol’ for instance.

However, if the option is specified, the reference will have been resolved because the

function wil have been inlined and the module will load correctly.

Unresolved symbol tcp sync mss

Another problem often encountered is an unresolved symbol tcp sync mss upon load-

ing the module in the kernel. To add this symbol to kernel memory, there are a few

ways to do it. The simplest way is to compile the kernel with IPv6 or khttpd

as a *module*. Yes, a module. This will cause the kernel image to include the

tcp sync mss symbol. It’s sloppy but it works. Don’t forget to recompile the entire

kernel, not just the modules. By the way, this solution is valid for kernel 2.4.17,

other kernel versions have not been tested yet with DSM code.

Kernel versioning

Often, many problems can be resolved by disabling kernel module versioning within

the kernel. Module versioning is useful for making modules dependent of the kernel

version they are running on. This is accomplished by appending a number after each

kernel symbol before it is resolved. This number will vary for each kernel version.

The natural consequence is that a module versioned for a specific kernel can no longer

be loaded into the memory of another kernel version, since the kernel symbols will

no longer match.

However, kernel versioning is a double sided sword. If kernel versioning is enabled, the

module must be compiled to use kernel versioning. On the other hand, if versioning

is disabled, the module must call regular kernel symbols. The solution opted by DSM

is to disable kernel versioning and compile the module versionless. Although DSM is

not versioned, it cannot be loaded into the kernel memory of another version. This is

because LSM data structures have been changed from one kernel version to another.

3.6. DSI 19

Variable Default value Use Files to edit

DSI ROOT DIR your install dir Location of the DSI root

installation directory

dsi setup.sh

MakeVars

XSD EVENT PATH DSI_ROOT_DIR/

etc/EventSchema.

xsd

Location of the XML

Schema for DSI Events

dsi setup.sh

DSI CACERT DSI_ROOT_DIR/

etc/dsi_root_

cacert.pem

Trusted CA file dsi setup.sh

DSI SS KEYCERT DSI_ROOT_DIR/

etc/dsi_server_

keycert.pem

Private key and certificate

for the Security Server

dsi setup.sh

DSI SM KEYCERT DSI_ROOT_DIR/

etc/dsi_client_

keycert.pem

Private key and and cer-

tificate for the node’s Se-

curity Manager

dsi setup.sh

LINUX DIR /usr/src/linux Root directory of kernel

sources

MakeVars

XERCESCROOT set by configure Root directory for Xerces-

C

dsi setup.sh

XERCES DIR same as XERCE-

SCROOT

same as XERCESCROOT

but for MakeVars...3
MakeVars

OMNIDIR set by configure Root directory for Om-

niORB and omniEvents

dsi setup.sh

MakeVars

OMNINAMES LOGDIR /var/omninames Log dir for omninames dsi setup.sh

OMNIORB CONFIG /etc/omniORB.cfg OmniORB configuration

file

dsi setup.sh

OMNI PLATFORM i586 linux 2.0 glibc2.1seeks the omniORB files in

./bin/OMNI PLATFORM

and

./lib/OMNI PLATFORM

dsi setup.sh

MakeVars

COS DIR OMNIDIR/

src/contrib/

omniEvents

Root directory for om-

niEvents

MakeVars

OPEN SSL ROOT set by configure Root directory for

OpenSSL

MakeVars

Table 3.2: Location of configuration variables

20 Chapter 3. Installation

Chapter 4

Setting up a sample scenario

for DSI

In this chapter, we describe how to set up a simple scenario for using DSI.

This chapter does not explain how to install DSI, but rather how to use

it.

4.1 A lightweight scenario setup

This section describes a very simple scenario for your first use of DSI. This scenario

requires :

• an LSM-patched kernel, supported by DSI,

• Xerces

• DSI code

Note that installing CORBA is not necessary for this limited scenario.

In this scenario, we’ll show basically how to set an ScID, how this affects loading of

binaries, and how to fix this by setting a new DSP.

Do the following on your machine:

1. Source the dsi setup.sh file.

2. Compile and load the DSM module into the kernel.

[alice@xx]> cd /home/alice/dsi/lsm

[alice@xx]> make

[alice@xx]> su

[root@xx]# ./load

or

[root@xx]# insmod dsm.o

To list the modules loaded in the kernel type: /sbin/lsmod.

3. Compile the tools to be used:

21

22 Chapter 4. Setting up a sample scenario for DSI

[alice@xx]> cd /home/alice/dsi/user/tools

[alice@xx]> make

4. Run DciInit to configure your node as part of this (limited !) cluster:

[alice@xx]> cd /home/alice/dsi/user/tools

[alice@xx]> echo ‘‘1 172 0 0 1’’ > dci_policy.conf

[alice@xx]> ./DciInit /home/alice/dsi/user/tools/dci_policy.conf

5. Check you can launch executables with default ScIDs (ScID=0 means there is

no binary ScID, hence the default ScID is used):

[alice@xx]> cd /home/alice/dsi/user/server

[alice@xx]> ./UDPServer &

[alice@xx]> ../tools/ls_dsi .

PERMISSION USER GROUP BSID FILE

-rwxr-xr-x alice install 0 UDPServer

6. Now, kill the UDP server and set it a different ScID. Unfortunately, it doesn’t

load any longer:

[alice@xx]> ../tools/SetSID UDPServer 20

Changing from SID 0 to SID 20

[alice@xx]> ../tools/ls_dsi .

PERMISSION USER GROUP BSID FILE

-rwxr-xr-x alice install 20 UDPServer

[alice@xx]> ./UDPServer

bash: ./UDPServer: No such file or directory

7. Obviously, we need to write a DSP to tell DSI to allow transitions between

ScID 2 (default) and ScID 20 (ours). Write the following DSP and load it:

[alice@xx]> vi DSP.xml

<?xml version="1.0" encoding="UTF-8"?>

<policy xmlns="http://sourceforge.net/projects/disec/DSP"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://sourceforge.net/projects/disec/DSP

/home/alice/dsi/etc/DSP.xsd">

<dsi_policy>

<version>

<major> 1 </major>

<minor> 0 </minor>

<date> 2002-02-28 </date>

</version>

<mode>PERMISSIVE</mode>

<default_ScID> 2 </default_ScID>

<securityRules>

<class_TRANSITION_rule>

<parent_ScID> 2 </parent_ScID>

<SnID> 2 </SnID>

<binary_ScID> 20 </binary_ScID>

4.2. A more realistic scenario: DisCI over UDP 23

<new_ScID> 30 </new_ScID>

</class_TRANSITION_rule>

</securityRules>

</dsi_policy>

</policy>

[alice@xx]> ../tools/UpdatePolicy /home/alice/dsi/user/server/DSP.xml

Reading /home/alice/dsi/user/server/DSP.xml

8. Now, the UDP server will launch without any problem. Notice that the ScID

of the process is 30 (new ScID):

[alice@xx]> ./UDPServer &

[alice@xx]> ../tools/ps_dsi

18280 30 axelle R UDPServer

4.2 A more realistic scenario: DisCI over UDP

The goal of this chapter is to provide an example of how to use DSI, and demonstrate

its DisCI and DisAC features.

In this scenario, our cluster is made of 3 different machines (see figure 4.1): a security

server (IP address 172.1.1.1), and two security managers : one running a simple UDP

server application (IP address 172.1.1.3), and the other running the corresponding

UDP client (IP address 172.1.1.2). Source code of UDP client and server is very

basic . The client sends a test UDP packet to the server every second.
See UDPclient.c

in user/client

See UDPserver.c

in user/server

Figure 4.1: Scenario architecture.

Our demonstration proposes to show:

• how access control is managed over the cluster,

• how applications may communicate securely.

By now, we suppose you have x different running hosts, with DSI compiled and

installed, IPSec installed, and certificates created for each host.

24 Chapter 4. Setting up a sample scenario for DSI

4.2.1 IP addresses

DisCI uses three different IP addresses, one for each security mode: no security, AH

and ESP. So first, assign 3 IP addresses to each machine that will run the demo.

For instance, on the SS, you can use aliases of your running network interface:

[root@ss]# ifconfig eth0:1 172.1.1.1 up

[root@ss]# ifconfig eth0:2 172.1.2.1 up

[root@ss]# ifconfig eth0:3 172.1.3.1 up

Please notice that these addresses must be valid addresses of the machine.

Then, properly edit <dsi_home>/user/tools/dai_policy.conf to match each IP

address with a given DisCI mode. Refer to lsm/dsi_dci.h for DisCI modes. For

instance, the following dai policy.conf file will map 172.1.1.1 to the DisCI no

security mode, 172.1.2.1 to AH mode and 172.1.3.1 to ESP mode.

0x00000001 172 1 1 1

0x00000002 172 1 2 1

0x00000004 172 1 3 1

Finally, run <dsi_home>/user/tools/DciInit to load this policy file:

[alice@ss]> cd /home/alice/dsi/user/tools

[alice@ss]> ./DciInit ./dai_policy.conf

4.2.2 CORBA setup

On each machine, edit your OmniORB configuration file (usually /etc/omniORB.cfg)

and add the following lines:

InitRef = NameService=corbaname::172.1.1.1/NameService

DefaultInitRef = corbaname:rir:#services

172.1.1.1 should be replaced by the IP address of your SS host. Those lines set the

reference point for omniORB’s naming service. Refer to [14] for further explanations.

omniNames and omniEvents both output logs in configurable directories. Those

directories may be changed by setting the environment variable OMNINAMES LOGDIR

for omniNames, and OMNIEVENTS LOGDIR for omniEvents. Refer to omniNames and

omniEvents documentation for more details.

By default, DSI outputs those logs in /var/omninames and /var/omniEvents. Those

directory must have rw access for the user that launches omniNames and omniEvents.

For instance, you may type the following commands:

[alice@ss]> su

[root@ss]# mkdir /var/omninames

[root@ss]# mkdir /var/omniEvents

[root@ss]# chmod g+rw /var/omninames

[root@ss]# chmod g+rw /var/omniEvents

[root@ss]# chown alice /var/omninames

[root@ss]# chown alice /var/omniEvents

4.2. A more realistic scenario: DisCI over UDP 25

Then, start omniNames and omniEvents:

[alice@ss]> cd /home/alice/dsi

[alice@ss]> source dsi_setup.sh

[alice@ss]> omniNames -start 2809 &

[alice@ss]> omniEvents -s 7766 &

Note : If you have already launched omniNames before, you may probably just type

in omniNames &. If you have already launched omniEvents before, you may probably

just type in omniEvents &. If it doesn’t work, delete omniEvents’ log file in /var/

omniEvents and re-try.

By this point, if you do a ps you should have multiple omniNames and omniEvents

running (number of processes launched may be configured in /etc/omniORB.cfg.

Refer to [14] for details).

[alice@ss]> ps

PID TTY TIME CMD

14365 pts/3 00:00:00 bash

8881 pts/3 00:00:00 omniNames

8882 pts/3 00:00:00 omniNames

8883 pts/3 00:00:00 omniNames

8884 pts/3 00:00:00 omniEvents

8885 pts/3 00:00:00 omniEvents

8886 pts/3 00:00:00 omniEvents

8887 pts/3 00:00:00 omniEvents

8888 pts/3 00:00:00 omniEvents

8889 pts/3 00:00:00 omniEvents

8890 pts/3 00:00:00 omniEvents

8891 pts/3 00:00:00 omniEvents

...

4.2.3 DSP setup

Setup your cluster’s security policy file. A sample security policy file may be found

in dsi/etc/SampleDSP.xml.

When setting up the DSP, you should pay particular attention to the schemaLocation

attribute. This attibute configures the location of the XML Schema for the DSP file.

Usually, this file should be found in dsi/etc/DSP.xsd. Edit the DSP so that the

second argument of the schemaLocation reflects the absolute complete

path of this XML schema.

For instance, if you have unpacked dsi in /opt/dsi, then your DSP should probably

start with:

<?xml version="1.0" encoding="UTF-8"?>

<policy xmlns="http://sourceforge.net/projects/disec/DSP"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://sourceforge.net/projects/disec/DSP

/opt/dsi/etc/DSP.xsd">

Notes:

26 Chapter 4. Setting up a sample scenario for DSI

• a space between the namespace URI (http://sourceforge.net/projects/

disec/DSP) and its actual location (/opt/dsi/etc/DSP.xsd) is mandatory.

• you should not change the namespace URI of the DSP (http://sourceforge.

net/projects/disec/DSP) unless you really know what you’re doing.

• for more information on the DSP, please refer to chapter 7.

4.2.4 Load DSM

On each node, load DSM:

[alice@xx]> cd /home/alice/dsi/lsm

[alice@xx]> su

[root@xx]# ./load

or

[root@xx]# insmod dsm.o

When DSM is loaded, an initial version of the security policy is pushed from the Se-

curity Server (Node SS) to all processing nodes using SCC (Security Communication

Channel). A security node ID is given by the Security Server to the nodes of the

cluster (in this case 2 nodes).

Current limitation: SSH does not support IP options. If DSM has been compiled

with IP options enabled (for DisAC features), you cannot use SSH...

4.2.5 Start the security servers and managers

Security server and managers communicate using XML events, so first, check the

environment variable for the XML event schema is set on both SS and SMs:

> export XSD_EVENT_PATH=/home/alice/dsi/etc/EventSchema.xsd

Also, for SS and SMs to communicate securely, keys and certificates must be provided:

> export DSI_CACERT=/home/alice/dsi/etc/dsi_root_cacert.pem

> export DSI_SS_KEYCERT=/home/alice/dsi/etc/dsi_ss_keycert.pem

> export DSI_SM_KEYCERT=/home/alice/dsi/etc/dsi_sm_keycert.pem

To start the security server and security manager, you need a password to unlock

the private key contained in DSI SS KEYCERT and DSI SM KEYCERT. You may

provide this password either as an argument to the binary, or simply run it without

any arguments and then you’ll be prompted for the password. The latter is the

recommended mode as the password is not echoed.

In this scenario, we use the dummy files provided in the dsi/etc directory. Their

password is “password”. On the SS node, start the security server:

[alice@ss]> cd /home/alice/dsi/SS/bin

[alice@ss]> ./dsiSecServer -p password &

On each SM node, start a security manager:

4.2. A more realistic scenario: DisCI over UDP 27

[alice@sm]> cd /home/alice/dsi/SM/bin

[alice@sm]> ./dsiSecManager -p password &

• Hack: if you get a warning about the SSL CA certificates, make sure to copy

your certificates to /etc/dsi which is the default location for certificates1. If

you haven’t created your certificates, you may copy the sample certificates of

dsi/etc.

• In case you get a message such as ”Failure contacting events channel Factory”,

try either to stop omniEvents, erase its log file and restart it ; or restart the

network services before you source dsi setup.sh: service network restart

&.

DSI is now running !

4.2.6 Start your UDP applications

First, change the ScID of the UDP server and client applications. You have to assign

them an ScID for which the DSP has a correct transition rule.

Then, start the applications. If the application fails to start, you probably did not

assign an ScID with the correct permissions.

For instance,

[alice@smserver]> cd /home/alice/dsi/user/server

[alice@smserver]> SetSID UDPServer 12

[alice@smserver]> ./UDPServer

And on the SM client machine:

[alice@smclient]> cd /home/alice/dsi/user/client

[alice@smclient]> SetSID UDPclient 12

[alice@smclient]> ./UDPclient 172.1.1.3

Note: There is a default value assigned to subjects and objects in the system on

initialisation. So the ScID of the UDPClient and UDPServer must be different from

this value to be able to test the policy.

Use the ls dsi command to check the ScID of your binaries:

[alice@smserver]> cd /home/alice/dsi/user/server

[alice@smserver]> ../tools/ls_dsi

PERMISSION USER GROUP BSID FILE

drwrr-xr-x alice install - CVS

-rwrr-xr-x alice install 12 UDPServer

-rwrr-xr-x alice install - Makefile

-rw-r--r-- alice install - TCPServer.c

-rwrr-xr-x alice install - UDPServer.c

-rwrr-xr-x alice install 0 TCPServer

1Work is under progress to use an environment variable instead.

28 Chapter 4. Setting up a sample scenario for DSI

4.2.7 Changing the DSP through the cluster

On the SS node, modify the DSP (SampleDSP.xml – see §4.2.3), and then notify the

SS of the change:

[alice@ss]> cd /home/alice/dsi/SS/test/demoSecOM

[alice@ss]> ./dsiUpdatePolicy /home/alice/dsi/etc/SampleDSP.xml

There should be a message appearing saying that the policy has been sent. On the

security server, we should see a message saying that an update policy message has

been received. Then, on the security manager, we should see that the policy has

been received.

When the policy is modified on the SS to give or deny the access privileges, it is

propagated through the SCC to all SMs. Then, access control services reload the

new policy locally, which signals the changes to the DSM module. Policy changes

will be take effect immediately (pre-emptive security).

We suggest you ’play’ with the XML DSP file, and change access control rules, and

DisCI modes. For instance, if you switch a DisCI rule from ’no security’ to ESP,

you should see all communication between UDP server and client switch from IP

addresses 172.1.1.2 → 172.1.1.3 to 172.1.3.2 → 172.1.3.3. And above all, if you sniff

UDP packets, they should be encrypted.

4.3 Other scenarios

Other scenarios are available at [1].

Chapter 5

Distributed Security Module

In this chapter, we discuss different aspects of the DSM module.

5.1 Kernel Socket Functions

On socket level, control is implemented in all functions. Using the source ScID/SnID

and the target ScID/SnID, each socket function validates the current process’ per-

missions.

5.2 Socket Permissions and Alarms

The Access Vector List (AVL) is indexed by a hash of SScID, SSnID, TScID, TSnID,

and a class. The class for sockets, DSI CLASS SOCKET, as well as socket permis-

sions and alarms are defined in dsi.h.
See

DSI CLASS SOCKET

in lsm/dsi.h
For instance, suppose one wants to assign both SOCKET CREATE (0x1)and SOCKET-

CONNECT (0x2) permissions to a particular security context (SScID/SSnID and

TScID/TSnID pair for the socket class), the correct permission would be 0x3.

Similarly, to assign create, connect and send permissions, the correct number is 0x7.

It is simply a matter of adding individual bits to form the hexadecimal number.

5.3 Allocation of Security Structure in Kernel Mem-

ory

When patching a kernel with LSM, hooks and void pointers to structures, such as

inodes, sockets, and tasks, are added at specific places in kernel source code. In this

section, we are interested in the allocation of memory to the structure referenced by

the void pointers.

DSM uses the void pointers to insert a security structure which contains among other

things the SScID/SSnID and TScID/TSnID of the inode, or task, etc. Generally,

one would allocate kernel memory with kmalloc, then assign the address to the void

pointer. This is the approach taken by SELinux. DSI defines a second mechanism

whereby it does not allocate memory to the structure.

29

30 Chapter 5. Distributed Security Module

For example, let’s consider an inode. It will contain quite a few fields and a LSM-

patched void pointer. In kernel memory, the inode is allocated a large enough amount

of memory to store all its fields with quite enough memory to spare. The trick is to

add our security structure (containing SScID and TScID...) to the end of this block

of memory without allocating kernel memory. In other words, we are overwriting the

memory and assigning a pointer directly to it.

The danger is if the kernel inode structure starts to expand, it might eventually

overwrite the security structure we added at the end. On the other hand, since the

security structure is only a few bytes, if the inode structure reached that point, it

was probably going to overflow its bound.

This has been proven to work quite well without any glitches so far. No benchmarks

have been done to see what performance gain is obtained with this approach.

The function that defines both implementations described above is get task memory.

If END OF TASK STRUCT is defined, no memory allocation will be performed.

See

get task memory

in

lsm/dsi task.c Otherwise, kmalloc will be used.

5.4 Speeding up policy rule matches

To speed up policy search, we use a hash table. The hash function is in dsi hash.c if

you are interrested in its details.
See dsi hash.c

in

Actually, when two policies have contradictory effect, the first to be found is the

one that will be used to make a decision. If the two policy have the same 5 number

(SScID, SSnID, TScID, TSnID, class) the first to be found will be the first entered

in DSM. If the policy don’t have the same number, they will be found in the order

described in the next paragraph

The module searches first for a rule with specific argument like 1 2 3 2 1 3. The

number correspond to SScID, SSnID, TScID, TSnID, class permission If it doesn’t

find it, it searches with wildcards (in our implementation, the wildcard number is

represented by a 0) in the following order : 1 2 3 2 1 3

1 2 0 2 1 3

1 2 0 2 0 3

1 2 0 0 0 3

If no rule matches, then we consider that no rule applies to this specific case.

5.5 Restrictive/Permissive rule enforcement in DSM

This section’s purpose is to inventory all checks in DSM that are permissive or

restrictive. When functions in dsi access control.c are called, if the caller does not

enforce errors, it is termed permissive. Otherwise, the caller is restrictive when

negative matches or a lack of match is interpreted as a permission restriction.

When a LSM-hook function returns a negative value, it is effectively denying per-

mission to whatever action called the hook.

Function Mode Alarm Notes

-------- ---- ----- -----

dsi_check_permission

5.5. Restrictive/Permissive rule enforcement in DSM 31

dsi_check_inode res no

dsi_ip_decode_options res no applies only when IP options

dsi_socket_sendmsg res yes dsi_socket_connect

dsi_socket_listen res yes see 1

dsi_socket_sendmsg res yes *** see 1!!!

dsi_socket_recvmsg res yes see 1

dsi_socket_getsockname res yes see 1

dsi_socket_getpeername res yes see 1

dsi_socket_setsockopt res yes see 1

dsi_socket_getsockopt res yes see 1

dsi_socket_shutdown res yes see 1

dsi_sock_rcv_skb res yes see 3

dsi_check_task res yes

dsi_check_transition

dsi_binprm_alloc_security res no allows execution of binaries

internal_task_alloc_security perm no assign sid from policy, else default

dsi_socket_bind perm no assign sid from port, else default

All function hooks that are marked restrictive either return a negative value due to a

failed check or, if the security struct is null, DSI DEFAULT PERM is returned (see

2).

5.5.1 Global recommendation

• When rc=dsi check permission() is negative and an alarm is sent, error code

treatment is pretty much a spaghetti. Should create a function to send alarm so

security check can exit as soon as rc is negative rather than navigating through

the entire function hook.

• DSI DEFAULT PERM should be negative? It’s the default value returned

when the hook should deny permission and is currently set to 0.

• dsi sock rcv skb: there are 3 calls to dsi check permission. The first one is with

the permission of the receiving socket. The 2nd one is only done if the 1st one

succeeded and process and socket ScIDs are different. Only one check should

be made and it should remain at the socket level. IP options are set, but if a

packet arrives with no IP options, defaults are assigned and checks are done

anyway. This is okay.

The 3rd call is done when there are no IP options set (CIPSO) at compile

time. This call uses ssnid=wildcard. This should not be the case, instead, the

default values should set at the beginning should be used. This happens to be

the same thing, but it is an issue of good coding.

Currently, DSM is in restrictive mode. If it cannot find a rule or it is not specified

explicitly that permission is allowed (value=1), security check will fail in all cases.

However, it is necessary that deny-permissions (value=0) exist, since often all per-

missions are or’ed into a single vector. Therefore, I can conclude that the function

32 Chapter 5. Distributed Security Module

of all rules in cache is to allow permissions. To deny a permission, it is either set to

zero or deleted.

5.6 Structure locking in DSM

Since DSM is a loadable kernel module that accesses many kernel structures, the issue

of locking was examined. Locking prevents other processes or CPUs from modifying

or deleting a structure that is currently being changed or read. There are two issues

to consider: locking of kernel structures and locking of DSM structures.

As for kernel structures, it was determined that LSM hooks were strategically placed

in kernel functions so that any structure passed down to a LSM hook was already

locked by the calling kernel function. However, there are some potential problems to

consider. It is possible that a structure with a read lock is passed to the LSM hook,

which in turn will try to write in the structure. Obtaining a write lock will deadlock

the kernel, whereas directly modifying the structure will cause instability. This

situation does not currently seem to be an issue. Another problem is the question of

deadlocks, but for now, DSM does not need to acquire any locks on kernel structures.

For DSM structures, locking would only be necessary if DSM were to support SMP.

Also, we assume that DSMmodule is alone in accessing its internal structures. There-

fore, DSM does not need to support locking of its internal structures. Perhaps, an

issue to investigate would be the allocation of the security structure when assigning

it to the void pointer in inode, socket, and other structures patched by LSM.

5.7 New System Call: sys security

LSM patch to the Linux kernel source code includes an extra system call named

sys security. DSM uses this system call to implement many userland functionalities;

these are mainly tools described in 11.

At the time of writing, DSM system call (sys security) has three parameters: un-

signed int id, unsigned int call, and unsigned long args. The first parameter is

simply DSI MAGIC constant . This is a minimal check to make sure that no pointer
See DSI MAGIC in

lsm/dsi.h
mangling happened or anything else unpredictable happened to the values of the

parameters. The second parameter identifies what function is being called because

sys security implements many functionalities. Inside the system call, DSM does a

switch-case on that second parameter to execute the correct functionality. The last

parameter is a pointer to an array of integers, which are the values to be used by the

functionality.

To invoke the sys security system call from a userland program, the call must first

be formatted with the syscall3 macro. The number 3 means that the system call

being called has 3 parameters. A typical syscall macro syntax:

_syscall3(int, security,

unsigned int, id,

unsigned int, call,

unsigned int *, args);

The format is the return type followed by the parameter except for the first pair,

5.8. Format of rules in DSM 33

which defines the return value and name of the system call. To execute the system

call:

ret = security(id, call, (unsigned int *)args);

The parameters id, call, and args are all internal to the userland program and must

be defined prior to making the system call.

System call sys security will execute with full kernel privileges.

5.8 Format of rules in DSM

The security system call used to talk to DSM takes an array of unsigned integers as

argument (see 5.7. Consequently, when loading security policy rules of the DSP in

the DSM, we cannot use a “complex” format such as XML, nor a structure of our

own: we really need to pass information through unsigned integers. This means a

translation between security policy rules (as represented in the DSP) and the actual

format DSM understands needs to be done. This section provides the technical

details of DSM’s inner syntax to represent security rules. For more information, refer

to lsm/dsi.h, lsm/dsi_cache.c, lsm/dsi_access_control.c, lsm/dsi_dci.c and

XML/src/dsiXMLDSP.cpp.

Class Format

DSI CLASS PROCESS ScID SnID x x Class Perm

DSI CLASS SOCKET

DSI CLASS DCI

SScID SSnID TScID TSnID Class Perm

DSI CLASS NETWORK SScID SSnID x TSnID Class Perm

DSI CLASS TRANSITION ParentScID SnID BinScID NewScID Class Perm (1)

DSI CLASS SOCKET INIT ScID SnID Protocol Port Class x (2)

Table 5.1: DSM’s inner format for representing security rules. The ’x’ means that

the field is ignored.

Remarks: (1) Because of a quick bugfix workaround, we actually replace the permis-

sion column by the value of NewScID.

(2) Because of a quick bugfix workaround, we actually send the ScID in the permis-

sion: Protocol SnID Port x Class Perm=ScID.

34 Chapter 5. Distributed Security Module

Chapter 6

Distributed Access Control

service (DisAC)

6.1 Introduction to Mandatory Access Control vs

Discretionary Access Control

Numerous work [4, 22] have already proved that fighting efficiently against malicious

code is utterly hard on UNIX systems that only implement Discretionary Access

Control (DAC).

As a matter of fact, with DAC, objects’ permissions are set by their owner. So, as

soon as an attacker manages to get hold of a (buggy) process, he gains access to all

resources the process owns. This security flaw is the general concept of several buffer

overflow exploits for instance.

The concept of Mandatory Access Control tries to counter this problem. Basically,

in MAC, access control no longer solely depends on owner’s decision but also on a

variety of security-relevant information. As an example, executing a given process

requires the correct ’x’ Unix permissions are set, but also that the current security

context allows new processes to be created. Let us imagine Alice needs to execute two

programs that she owns: ./secprg that she trusts and ./handle-with-care the she

does not trust. Common sense requires that ./secprg should probably be allowed to

spawn new processes, but surely that ./handle-with-care shouldn’t. This is what

MAC does: it clearly assigns different security contexts to both programs. With

DAC, this might have resulted in a security flaw.

Although the Linux community has not yet come up with a federating way to im-

plement MAC mechanisms, several interesting projects have been working in that

area on Linux [9, 4]. However, those solutions are single node based, and need to be

adapted to distributed networking.

6.2 Access control for processes using ScIDs

DisAC basically focuses (1) on providing coherent distributed security services across

different nodes and (2) on simplifying cluster’s security administration. Those re-

quirements have been taken account in the following way.

35

36 Chapter 6. Distributed Access Control service (DisAC)

First, DisAC implements the Mandatory Access Control (MAC) paradigm over the

entire cluster with process-level granularity. This is discussed more precisely in §6.2.1.

Second, to help security administrator in his tasks, DisAC uses DSP’s propagation

through the cluster. The security administrator sets up the security policy on the

security server, and then, the DSP gets propagated. There is no need for him to

configure individually each node of the cluster (see section 7). DisAC also allows ad-

ministrators to simplify access control rules by setting different categories of security

contexts. This is described in §6.2.2.

6.2.1 Cluster-wide access control for DisAC

In the MAC model, access control depends on a variety of security relevant informa-

tion (contrary to Discretionary Access Control model where access privileges are set

by object’s owner). For instance, in the FLASK architecture [21], access is a function

of both source and target security information (named SIDs):

Access = Function(Source SID,Target SID)

DisAC extends this local access control to a distributed access control for the whole

cluster, using both source/target security node and security context identifiers as

security information:

Access = Function(SSnID, SScID, TSnID, TScID)

So, access privileges may be defined at process-level for both local and remote nodes.

For example, it is possible to define that a process of type A is only able to access

resources of type B on nodes M and N of a given cluster1.

This is particularly useful for large clusters, where there is a need for compartmen-

talization into distinct sub-clusters with restricted/controlled connections between

sub-clusters. For instance, this scenario is quite useful for telecommunication clusters

that are shared among different operators: operators share the global infrastructure

of the cluster providing different services, but they certainly do not wish to share

their binaries or data with other operators.

6.2.2 Categorizing binaries for an easier management

In DSI, ScID are stored in binaries. Each binary can have a ScID stored in its Elf

header. DSI also has mechanisms to support digital signatures for binaries in order

to avoid these ScIDs to be tampered with by the intruders2.

In chapter 2, we have reminded that security context identifiers identify a given

security context. Hence, if the same security context applies for different binaries,

they may share the same ScIDs. This enables compartmentalizing of binaries.

From a practical point of view, this may be very helpful to the administrator. Instead

of assigning an ScID to every single binary of the node (a heavy burden in reality

1Actually, for the time being, access control’s granularity for a given process type has only been

implemented at node level yet. This means the current implementation will only allow to say process

of type A may access nodes M and N , but not which process types on those nodes.
2This is currently developed. However, there are several open source projects already imple-

menting this.

6.2. Access control for processes using ScIDs 37

!), he may just group them together according to the security needs (for instance

beased on trusted vs. untrusted source for the binary).

At process creation, new processes are automatically given either their own specific

ScID stored in their binary image; Or if they don’t have any ScID stored in their

binary image, they are assigned their parent’s ScID.

Briefly, there are two different ways to create a new process: fork the process, or

spawn a new process:

• If a process is forked3, then the DisAC service checks DSP whether the process

has such authorization or not. If authorization is granted, the forked process

inherits everything from its father including its ScID. If the father hasn’t any

ScID, then the process is assigned a default (generally restrictive) ScID.

• If a new process is to be spawned (i.e.; execve), then the DisAC service checks

whether the DSP allows transition from a process of a given binary ScID, with

a given parent ScID to a new ScID. If the transition is granted then the new

ScId is used. If either the parent of the binary do not have a ScID, a default

ScID is used.

An administrator could consequently choose to classify his processes into several

different groups: trusted processes that receive a specific ScID which bind them to

a particular security context, and untrusted processes which simply do not have an

ScID and either inherit their parent’s ScID or a default restrictive ScID depending

on DSP general mode: restrictive or permissive4.

6.2.3 Access control at kernel level

For security not to be bypassed, the DisAC service has been implemented at kernel

level, as part of the Distributed Security Module (DSM) [?]. The latest access control

rules are always cached locally, at kernel level, in an Access Vector List which memo-

rizes (1) the security node and security context identifiers, (2) the type of permission

(called class), and (3) the permission.

Currently, DSI’s implementation is limited to only a few permissions and classes

(see table 6.1). As a matter of fact, we have focused on demonstrating DSI could

provide cluster-wide access control for socket communications. we plan to extend

access control mechanisms to all other useful permissions.

3This means that the parent’s binary is also used for this new process.
4These modes are not currently implemented.

38 Chapter 6. Distributed Access Control service (DisAC)

Class Permissions

DSI CLASS PROCESS PROCESS FORK

DSI CLASS SOCKET SOCKET CREATE,

SOCKET CONNECT,

SOCKET SEND,

SOCKET LISTEN,

SOCKET RECEIVE,

SOCKET SHUTDOWN,

SOCKET GET OPTIONS,

SOCKET SET OPTIONS,

SOCKET GET SOCKNAME,

SOCKET GET PEERNAME

DSI CLASS NETWORK NETWORK RECEIVE

DSI CLASS TRANSITION no specific permission.

Table 6.1: Permissions and classes currently implemented for DisAC

Chapter 7

Policy configuration file

In this chapter, we describe the policy configuration syntax and it’s re-

lated mechanisms. We first start by describing the configuration file called

DSP. Then, we take a look at the interpretation of the DSP made by the

current implementation of DSI. Finally, we explain the different use’s

aspects of the DSP.

7.1 Distributed Policy File

The distributed security policy (DSP) is a file in which an administratively deter-

mined security policy can be written using a variable level of granularity over access

control. The main goal of the DSP is to define, in a single file, a security policy to

be enforced over a whole cluster. Alternative goals are to ease the human readability

of the policy and to use a syntax flexible enough to support the frequent changes in

the rules format. Those changes are mainly due to the early developpement stage of

DSI. To fill those needs, the DSP syntax has been defined using the XML language.

On top of filling the DSP requirements, XML comes with a variety of open source

tools and many security mechanisms.

The DSP is composed of:

1. a list of security rules (cf. §7.1.1),

2. and a few other global items such as version, mode etc (cf. §7.1.2).

7.1.1 Security rules

Rule types are defined to manage permissions on different system object classes,

ressources or operationnal modes. Before we describe the predefined types of rules,

you have to know that all rules are build around the concept of security identifiers.

ScID and SnID are the two kinds of security identifiers used in the DSP. An ScID

is an integer value attributed to a ressource (process, socket, ...) and identifies a

security context. ScIDs are persistant (i.e after reboot, resources retain the same

ScID), global to the whole cluster (i.e known on all nodes), and identify uniquely a

security context (but not a process, nor a binary – binaries may be grouped onto the

same ScID if they should share the same security contexts). An SnID is an integer

value assigned to a node of the cluster. It identifies uniquely a given node.

39

40 Chapter 7. Policy configuration file

Process rules

The class PROCESS rule rule is made to define permissions that concern processes.

The process rule applies to a given ScID and SnID. Currently, the only permission

available is CREATE.

<class_PROCESS_rule>

<ScID>1</ScID>

<SnID>1</SnID>

<allow>CREATE</allow>

</class_PROCESS_rule>

Figure 7.1: Allowing permissions to processes

The rule in example 7.1 specifies that, on node SnID 1, processes with ScID=1 may

be successfully created.

<class_PROCESS_rule>

<ScID>1</ScID>

<SnID>ALL</SnID>

<deny>CREATE</deny>

</class_PROCESS_rule>

Figure 7.2: Denying permissions to processes

The rule in example 7.1.1 specifies that, on all nodes, processes with ScID=1 cannot

be created. Both ID elements can either take a non-negative integer value (between

0 and 65535) or the ALL keyword (meaning all valid IDs). The process permission

set contains the following elements: CREATE.

ScIDs are allocated through the binary file called to initiate a process. The ScID

value is stored in the ELF header of the binary file using the ”SetSID” command

(see §11.5).

Socket rules

The class of rules class SOCKET rule gives the possibility to an allow or deny spe-

cific operations on sockets for given processes. The rules uses four IDs: two source

identifiers (context and node) and two target identifiers (context and node).

<class_SOCKET_rule>

<sScID>1</sScID>

<sSnID>ALL</sSnID>

<tScID>1</tScID>

<tSnID>ALL</tSnID>

<allow>CREATE CONNECT SEND LISTEN RECEIVE

SHUTDOWN GET_OPTIONS SET_OPTIONS

GET_SOCKNAME GET_PEERNAME</allow>

</class_SOCKET_rule>

Figure 7.3: Allowing permissions to access given type of sockets

7.1. Distributed Policy File 41

In example 7.3, the rule allows processes with a ScID of 1 on all nodes to perform

create, connect, send (etc) operations on sockets handled by resources of an ScID 1

on any node.

It is very important to understand that neither source nor target identifiers necessar-

ily refer to sockets. They may very well refer to processes. For instance, suppose we

have a process A on node 1, of ScID=4 that communicates with process B on node

2, ScID=5. Process A and B both use a TCP socket, port 8000, on node 2, which

is assigned ScID=31. On Unix operating systems, communication towards remote

socket actually create a local socket (programmer does not control that socket - the

system does that). So, actually, a socket on node 1 is also created, and we suppose

it has ScID=30.

Sending and receiving information between process A and B results in the following

rules being checked by the DSM (see table 7.1).

Rule SScID SSnID TScID TSnID Perm.

1 4 1 30 1 Create

2 5 2 31 2 Create

3 30 1 31 2 Listen

4 30 1 31 2 Connect

5 30 1 31 2 Send

6 30 1 31 2 Receive

7 31 2 30 1 Send

8 31 2 30 1 Receive

Table 7.1: Socket Rules checked for secure remote access control.

We notice here that we have socket class rules (permission send, receive) for elements

that are not processes (see rule number 5 for instance).

Socket init rules

Sockets ScIDs are determined by the socket init rules, at the moment of their cre-

ation, based on the protocol it uses and the port on which it’s connected. Here’s an

example:

<class_SOCKET_INIT_rule>

<protocol>TCP</protocol>

<port>50001</port>

<ScID>1</ScID>

<SnID>1</SnID>

</class_SOCKET_INIT_rule>

Figure 7.4: Attribution of an ScID to a socket

In example 7.4, the ScID of 1 is allocated to TCP sockets on the port 50001 created

on the node 1. Has in the other kinds of rules, the SnID can take the value of

”all” which means every SnID available. Allowed values for the protocol element are

”UDP”, ”TCP” and ”RAW”1. The port value must be a positive integer lower than

1Currently, RAW sockets are not supported

42 Chapter 7. Policy configuration file

65536.

Network rules

The socket class rules can be used to configure access at the transport (and higher)

layer of network stack, while the network rules are used to allow or deny permissions

at the network (IP) layer2.

Note that there is no tScID for network rules, as when the network rule is checked it

is impossible to know to which ScID it maps. The only possible network permissions

is: NETWORK RECEIVE.

<class_NETWORK_rule>

<sScID>1</sScID>

<sSnID>ALL</sSnID>

<tSnID>ALL</tSnID>

<allow>NETWORK_RECEIVE</allow>

</class_NETWORK_rule>

Figure 7.5: Allowing network permissions

The example 7.5 figure shows an example of network class rules. The rule in example

7.5 shows us that processes with an ScID of 1 on every node can receive IP packets

from processes with an ScID of 1 on any node. Note that network class rules, has

for the socket rules, can also be of a denial type.

DisCI rules

One of the main features of DSI is DisCI, allowing the administrator of a cluster to

decide, at run time, to switch the intra-cluster communications from beiing secured,

using IPSEC, or not. DisCI can be configured thru the ”class DisCI rule”s. DisCI

rules look a lot like network and sockets rules: permissions are defined for a pair of

IDs identifying the source, and another pair identifying the destination.

<class_DisCI_rule>

<sScID>1</sScID>

<sSnID>1</sSnID>

<tScID>1</tScID>

<tSnID>2</tSnID>

<allow>

<ipsec_mode>ESP<ipsec_mode>

</allow>

</class_DisCI_rule>

Figure 7.6: Allowing the encrypted mode of IPSEC

The example 7.6 demonstrates how to secure the transmissions from the processes

with an ScID of 1 on the node 1, to the processes with an ScID of 1 on the node 2.

Contrasting with the other classes of rules, in DisCI rules the allow element can’t be

2Consequently, network rules are, in a sense, redundant when used for socket communications,

but they are needed for other types of communications (pipes, raw ip...).

7.1. Distributed Policy File 43

replaced by a deny element. The allow element also differs by containing an element

instead of a value. Current implementation of DisCI use ipsec to protect messages,

but if other security mechanisms append to be implemented, more elements could

be added to the allow section of the DisCI rules. Possible values for the ipsec mode

element are: ESP, AH and NO SEC. ”ipsec mode” can’t contain a set of elements

has the permissions in the other class of rules, the element can contain one and only

one value.

Transition rules

Finally, the transition rules define the resulting ScID of a process launch by another

process. When such process creation happens, the resulting ScID is determined by

the ScID and SnID of the parent process and the ScID of the newly created process

binary file.

<class_TRANSITION_rule>

<parent_ScID>1</parent_ScID>

<SnID>2</SnID>

<binary_file_ScID>3</binary_file_ScID>

<new_ScID>4</new_SnID>

</class_TRANSITION_rule>

Figure 7.7: A transition rule

The example 7.7 specify that when a process with an ScID of 1 on the node 2 tries

to create a process from a binary file with an ScID of 3, the new process should have

an ScID of 4. Has in the other class of rules, the keyword ”all” can be used in the

element identifying the node (SnID).

7.1.2 DSP structure

Apart from security rules, the DSP also contains a few other elements such as a

”version” element, a ”mode” element and a ”default ScID” element.

The version element contains three elements: ”major”, ”minor” and ”date” ele-

ments. Major and minor elements contains integer values identifying the version of

the DSP, while the date elements contains a XML date datatype value.

The mode element defines the DSI behaviour when no rules exist and a check is

performed. Two available modes are defined : ”PERMISSIVE” and ”RESTRIC-

TIVE”3.

• In permissive mode, what’s not explicitly defined in the DSP is allowed. This

is useful to set up a configuration without breaking the actual configuration of

your machines. However, handle it with care, because it may be too permissive.

• In restrictive mode what’s not defined in the DSP is denied.

Currently, DSI is in restrictive mode, however a few rules are automatically launched

at startup so as not to “break” down the whole configuration of your machine.

3Currently, those modes are ignored in the DSP, and DSI always works in a restrictive mode,

with some default rules added so as not to break the whole configuration of your machine.

44 Chapter 7. Policy configuration file

The element called ”default ScIDs” defines the ScID value given to processes whose

binaries do not have an explicit ScID set. This default ScID is also assigned to pro-

cesses which are already running at the time the DSM module is launched. Currently,

this field is ignored and the default ScID is always set to 2.

Finally, the XML Schema of the DSP introduces a dsi policy element. This allows

the DSP to optionally contain other policies than just DSI’s. Currently, DSI will

only analyze the dsi policy element. See figure 7.8.

<policy>

<dsi_policy>

<version>

<versionID_major> ... </versionID_major>

<versionID_minor> ... </versionID_minor>

<date> ... </date>

</version>

<mode> ... </mode>

<default_ScID> ... </default_ScID>

<securityRules>

...(different rules)

</securityRules>

</dsi_policy>

</policy>

Figure 7.8: DSP file structure

For more technical or syntaxical information, please refer to the XML Schema of

the DSP located in dsi/etc/DSP.xsd, or the DSP modif help.xsd file also located

in dsi/etc/.

7.2 Parsing of the DSP

In this section, we describe how the Security Server parses the XML content of the

”Distributed Security Policy” (commonly called DSP).

7.2.1 Parser specification

The Security Server is written in C++ and it uses the version 2.1.0 of Apache’s

Xerces-C++ validating XML parser.

The path and name of the DSP file to parse are determined as an argument of the

XML UpdatePolicy event (see chapter 8) and is received from the ORB channel in

SS/src/dsiSSOMSubscriber.cpp.

The DSP is validated against the DSP’s XML schema, whose location needs to be

specified in the XML DSP file using the schemaLocation attribute:

<?xml version="1.0" encoding="UTF-8"?>

<policy xmlns="http://sourceforge.net/projects/disec/DSP"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://sourceforge.net/projects/disec/DSP

7.2. Parsing of the DSP 45

/home/lmcaxpr/dsi/etc/DSP.xsd">

<dsi_policy>

It is very important to leave one space between the DSP’s namespace (http:

//sourceforge.net/projects/disec/DSP) and the location of its schema (here,

/home/lmcaxpr/dsi/etc/DSP.xsd).

More information about the schemaLocation can be found from its own schema,

which is found at http://www.w3.org/2001/XMLSchema-instance.

7.2.2 Parsing the security rules

The current implementation of the security server only considers the elements named

after the six security rule classes. Those rule class names are:

• ”class PROCESS rules”,

• ”class SOCKET rules”,

• ”class NETWORK rules”,

• ”class SOCKET INIT rules”,

• ”class DisCI rules”

• and ”class TRANSITION rules”.

Currently, elements that are not part of the security rule tags (such as ”version”,

”mode”, ”default ScID”...) are ignored by the parser. Newever versions of DSI ought

to parse the DSP completely.

The parsing of the DSP file is handled by XML/src/dsiXMLDSP.cpp. Building a

dsiXMLDSP object parses the file that is passed to it as argument, and validates

it against its XML Schema. Internally, a bi-dimensionnal array called m RawDSP is

created. This array is made of six columns and a number of row corresponding to

the total number of rules read in the DSP (the total number of rules read in the DSP

is determined by the private getNbRules() method).

The rules stored in the m RawDSP array comply to the DSM rule syntax which is

described at §5.8. Briefly, values can be interpreted like this:

sScID sSnID tScID tSnID class permissions.

Here’s how the translation is done for each kind of rules:

• ALL: the ALL joker is translated the value of 0.

• class PROCESS rule: the process class rule does not contain any target

ScID or SnID. Hence, in the array, the values of tScID and tSnID are left to 0,

and will be ignored by the DSM.

• class SOCKET INIT rule: the format of this rule is totally different to the

usual scheme because of the very special meaning of the rule. The first column

represents the ScID. The second column represents the SnID. The third column

represents the protocol of the socket (TCP, UDP, RAW), and the fourth column

represents the port number.

46 Chapter 7. Policy configuration file

• class TRANSITION rule: this rule follows the following format: the first

column to be stored is the Parent ScID, then the SnID, then the Binary ScID,

then the NewScID. The class and permission columns are ignored.

7.3 Updating the policy

In this section, we explain how we update the policy. At first, we explain how we

can edit and modify the policy file, then we explain how to load that DSP in DSI.

7.3.1 Modifying the DSP

To update the DSP file, you basically have two solutions:

• edit the XML file manually, referring to the XML Schema located in dsi/etc/

DSP.xsd, and DSP samples in dsi/XML/test/ex*.xml.

• or use the graphical TCL/TK DSP editor. This should be your favored choice

if you are not familiar at all with XML. This tool is located in dsi/user/

tools/dsp_generator, and is called dsp.tcl. It is a simple TCL/TK interface

script for writing a DSP. To use this tool, you need the Run-time library (rtl)

to be installed on your system (available at http://www.prs.de/cgi-bin/

download/download.pl). You can launch the interface by calling the dsp.tcl

file from the command line. When a dsp file is created by the dsp generator,

it assumes that the corresponding XML shema is called DSP.xsd and that it is

located in the current directory.

Next we describe how to write the different class of rules using the dsp generator,

but before writting any kind of rules, you should enter the path and name of the

DSP file in the ”DSP file name” textbox.

Configuring a Process rule with DSP Generator

A process class rule looks like this:

<class_PROCESS_rule>

<sScID>1</sScID>

<sSnID>2</sSnID>

<allow>CREATE</allow>

</class_PROCESS_rule>

To write a process class rule, one should use the ”Source : ScID” field for the sScID

value and the ”Source : ... SnID” field for the sSnID value. Remember that the ’0’

value stands for the ”ALL” keyword, meaning that if you choose 0 for an ID value

(i.e.: Source ScID and SnID, Target ScID and SnID, and New ScID), ”ALL” will

be written in the corresponding field of the DSP file. To set values in those fields:

select the apropriate field and use the up going and down going arrows or just type

the desired value in.

Then, you select ”PROCESS” in the ”Object Class” combobox. Selection is done

by dropping down the list (clicking on the arrow or on the text part of the widget)

7.3. Updating the policy 47

and by clicking once on the chosen value. At this point, if a process rule having the

same sScID and sSnID value is already existing in the DSP, the allowed and denied

permissions of that rule should appear in the apropriate listbox.

Finally, you have to include the desired permissions in the ”Allowed” listbox. You

can also include permissions in the ”Denied” listbox. The tool won’t let you include

the same permission in the ”Allowed” list and in the ”Denied” list. This is to prevent

the creation of contradicting rules.

After entering all the rule data, you have to press on the ”Save” button. If you

didn’t enter the ”DSP file name” yet, an error message will be written in the parent

terminal. If you did enter the file path and name, your rule(s) will be written in

the selected DSP file. If no permissions are in the ”Allowed” or ”Denied” lists: no

rules will be written. If permissions are ”Allowed”, a new process allow rule will

be written. If permissions are ”denied”, a new process deny rule will be written. If

some permissions are ”allowed” and some are ”denied”, a new process allow rule and

a new process deny rule will be written. If process rules with the same sScID and

sSnID where present in the DSP they will be replaced (erased) by the new ones.

Configuring a Socket rule with DSP Generator

Socket class rules are generated by this interface the same way then process class

rules are. One should use the ”Target : ScID” field for the tScID value and the

”Target : ... SnID” field for the tSnID value. Remember that the ’0’ value stands

for the ”ALL” keyword.

Configuring a Network rule with DSP Generator

Network class rules have the same format than Socket class rules, and they are

configured the same way in the dsp generator.

Configuring a DisCI rule with DSP Generator

DisCI class rules are entered in the dsp generator the same way then socket or net-

work rules. The only difference is that the permissions (permissions should be called

modes in this case) can only be allowed, and only one permission can be granted.

Configuring a Socket Init rule with DSP Generator

To write a socket init rule in the DSP file, one should start by selecting ”SOCKET INIT”

in the ”Object Class” combobox. The ”Permissions” list will then be filled by the

available protocols. In this circonstances, ”Permissions” (i.e.: protocols) can only

be added to the Allowed list and the Allowed list can only contain one value. That

value will be the value inserted in the protocol element of the rule.

The port value should be written in the ”Port” field of the interface. A ’0’ in the

Port field will be scripted has ”ALL” in the resulting rule.

The ScID and SnID values should be written in the ”Target : ScID” and the ”Target

: ... SnID” fields.

If socket init rule with the same protocol, port and SnID was present in the DSP, it

would be replaced (erased) by the new one.

48 Chapter 7. Policy configuration file

Configuring a Transition rule with DSP Generator

A transition class rule looks like this:

<class_TRANSITION_rule>

<parent_ScID>1</parent_ScID>

<SnID>2</SnID>

<binary_file_ScID>3</binary_file_ScID>

<new_ScID>4</new_SnID>

</class_TRANSITION_rule>

Fields from the interface are mapped to the transition rule elements this way:

INTERFACE <--> RULE

- Source : ScID - parent_ScID

- Source : SnID - SnID

- Target : ScID - binary_file_ScID

- New ScID - new_ScID

If transition rule with the same parent ScID, SnID and binary file ScID was present

in the DSP, it would be replaced (erased) by the new one.

7.3.2 Loading the DSP

To load a DSP in all security managers of a cluster, you should use the dsiUpdatePolicy

command found in dsi/SS/test/demoSecOm, with the absolute path and filename of

the DSP you want to load. This will send a message to the Security Server, asking

him to ”push” that DSP. It should then be done immediatly and the new DSP should

be enforced automatically. More information about this tool is available at §11.3.

Chapter 8

Secure Communication

Channels

In this chapter, we detail how the different secure channels work.

8.1 Events

Each channel handles only one given type of event.

8.1.1 General format of events: XML

Events are sent using XML format. XML is convenient in our case because:

• it produces self describing messages that are easy to understand for the user.

• it is an extensible language, so it is simple to make messages’ format evolve

according to our needs. This is particularly useful in the early stages of de-

velopment of DSI where we are not quite sure about what all messages should

contain, and how to format information. Once we have a fixed number of

message types, if performances require it, we can decide to switch from a “dy-

namic” time consuming XML parser to a more static and efficient approach

based on strcmp and switches.

• XML has its own mechanisms for security. For instance, an XML document

may be signed, or encrypted. During message intensive phases of DSI, it is

even possible to sign or encrypt only the critical parts of an XML document.

By the way, note it is possible to use XML to transmit commands as well as data.

8.1.2 XML Namespace

All XML Schemas [23] of DSI are written with the following namespace:

<?xml version="1.0" encoding="UTF-8"?>

<schema xmlns="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://sourceforge.net/projects/disec"

49

50 Chapter 8. Secure Communication Channels

xmlns:dsi="http://sourceforge.net/projects/disec"

elementFormDefault="qualified">

This defines the tag ’dsi’ for types DSI introduce.

8.1.3 Heart beat event

Heart beat is a very simple event sent from SS to SMs to check the availability of

SMs. This is to detect the faulty nodes or nodes that do not run SM.
See

dsiSecServer.cpp

in dsi/SS/src

<element name=’’Check’’ type=’’dsi:Check_type’’/>

<complexType name=’’Check_type’’>

<choice>

<element name=’’HeartBeat’’ type=’’dsi:HeartBeat_type’’>

</choice>

</complexType>

<simpleType name=’’HeartBeat_type’’>

<restriction base=’’string’’>

<maxLength value=’’0’’/>

</restriction>

</simpleType>

A wrapping Check type is created so that other types of check events can be added

later on. The value of the HeartBeat type has no importance and should be left

blank.

8.1.4 Update policy event

This event is sent to force the SS to read a new DSP. .

See dsiUpdate-

Policy.c in

dsi/SS/test/-

demoSecOM

<element name=’’UpdatePolicy’’ type=’’anyURI’’/>

In this event, the absolute path to the DSP to load should be set in the UpdatePolicy

element.

8.1.5 The DSM Rule event

This is an even sent from SS to SMs, to push the updated DSP rules. This even uses

DSM’s internal syntax to represent rules, instead of XML.

We do not use XML here because it would mean

1. parsing the DSP on the SS,

2. sending the Update Rule event in XML,

3. parsing the event on the SM,

4. enforcing the rule in DSM.

8.1. Events 51

Hence, we would basically end up parsing the DSP N+1 times (N being the number

of nodes on the cluster)...

So, instead, we have chosen to:

1. parse the DSP on the SS

2. send each updated rule in a pre-formatted DSM syntax,

3. enforce the rule directly in DSM (no parsing/analyzing needed).

The syntax for this event should strictly conform to:

BEGIN DSM RULE <sScID> <sSnID> <tScID> <tSnID> <class> <perm>

END DSM RULE

with :

• the whole event being a plain character string, ended by a NULL. No CR or

LF.

• sScID, tScID, sSnID, and tSnID being 32-bit integers ranging from 1 to 65535.

Special value 0 mapping to “ALL” (joker), and value -1 meaning value is not

set.

• class being an integer with valid values in dsi.h.

• perm being an unsigned 32-bit integer, with valid values set in dsi.h

• in the special case of transition class, sScID is replaced by parent’s ScID, tScID

by the executable’s ScID and perm by the new ScID.

Note: special caution should be taken at implementing DSM across various platforms

so that the event remains portable. As long as 32 bit integers, unsigned integers and

basic character strings are used (there’s no special character in the header and footer

tag), this event should remain portable. If this becomes a major issue, work should

be done to use a simple portable syntax (DER ? XML ? ..).

Note 2: the Update DSM Rule event sends one rule at a time. Actually, it is intended

to send only updated rules. However, in practice, currently, no such mechanism is

implemented, and all rules get pushed at each DSP propagation.

8.1.6 Alarm and Warning events

The security managers send the following alarms to the SS :
See

dsiSecManager.cpp

in dsi/SM/src

<element name="Information" type="dsi:Information_type"/>

<complexType name="Information_type">

<choice>

<element name="Debug" type="string"/>

<element name="Info" type="string"/>

<element name="Warning" type="string"/>

<element name="Alarm" type="string"/>

<element name="Critical" type="string"/>

</choice>

</complexType>

52 Chapter 8. Secure Communication Channels

Currently, only warning and alarm levels are implemented. Moreover, this event is

likely to evolve once the auditing service is designed.

Remark: instead of defining specifically a type for each level, an idea would have

been to have a level field (containing severity) and a content field (containing the

information). We have not done this, because, then in XML it is not possible to

make a particular level field match with its corresponding type (ex: level specifies

’Alarm’ so only an alarm content is valid)1

8.2 Parsing dispatched XML events

Both the security server and the security managers instantiate an XML parser to be

able read dispatched XML events on the SCC.

The XML event undergo the following process:

1. First, they are created and pushed to the corresponding event consumer (for

instance, see dsi/SS/src/dsiSecServer.cpp.

2. The event consumer forwards the event to the specified channel (for instance,

see Push in dsi/SCC/PL/src/dsiPLEventConsumer.cpp).

3. The push() function of the corresponding subscriber gets called (for instance,

see dsi/SM/src/dsiSMServiceSubscriber.cpp).

4. The event is parsed with a SAX Parser[19].

5. Message’s syntax is checked.

6. The corresponding command is executed, and eventually the information is

propagated to other components.

Note that XML events are not authenticated as they are sent on secure channels that

already support authentication and encryption.

8.3 Integration of SSL in secure channels

To protect the integrity and the confidentiality of the messages between SS and SMs,

SCC uses SSL/TLS. OmniORB 4.0 supports SSL, so we use this feature to add SSL

support to SCC.

Private and public keys of each node should be generated by the cluster’s adminis-

trator and stored in specified directory2. Note private key’s protection is the respon-

sibility of the administrator.

1If somebody thinks this is possible, please let me know...
2Currently, the name of that directory is fixed - hard coded - to /etc/dsi, but an environment

variable should soon be provided

Chapter 9

Distributed Confidentiality

and Integrity service (DisCI)

In this chapter, we explain implemented mechanisms to change IP ad-

dresses at the socket layer, using the security hooks LSM.

9.1 Introduction

DisCI concerns the communications inside the cluster.

9.2 The rationale

DisCI is the same thing as NAT with the difference that it can be used at process level

inside a cluster in a dynamic way, i.e.; the administrator according to the general

security context for each process type set can switch between secure and unsecure

chanels.

Even if the primary goal of DisCI is for communications inside the kernel, we have

extended the implementation to the external addresses. This is to allow to change

at process level the ipsec, this is further more according to our approach to extend

MAC into the cluster.

For example, a usage model can be the following: a linux cluster, with several nodes

running Linux. Using SetSID, we divide the binaries into several sets: using secure,

unsecure channels. For example, data base related binaries, statistic related bina-

ries... We can imagine that data base binaries use secure channels as he ones in the

static sets use non secure channels. We have the possibility of switching the chan-

nels used for each set of binaries according to the security context. For example, we

switch from no secure channel for statistics to secure one or for some high volume

we decide to pass from secure to no secure channel in order to save some comuting

time.

9.3 Advantages/disadvantages of using DisCI

Advantages:

53

54 Chapter 9. Distributed Confidentiality and Integrity service (DisCI)

• DisCI can be used to set different security policies based on process. This

can save the substentially amount of CPU power by avoiding the encryp-

tion/decryption of useless data.

• DisCI is transparent to application code.

• DisCI can be used by the admin to enforce security independant of how the

application is implemented.

• DisCI is process level. for example, it is possible to decide to secure the cm-

munications of parts of an application. or some processes without affecting the

rest of the processes. For example a possible scenario can be that the admin

decides to switch some applicaitons into secure connections, therefore the ad-

min changes the dsp file to switch for processes in all the cluster, or its network

of machines, then the admin rebootn all the processes and they are now all

communicate to each other through ipsec/secure communications.

• DisCI allows to implement a dynamic policy. To go forth and back to secure

and no secure depending on the load and general security context of the system

and this at process level. For example, the administrator can choose to switch

only some types of processes on a node according to the secuirty context.

9.4 How to use DisCI?

Using SetSID tool to set SIDs for different binaries, the administrator can divide

binaries into different sets. Each set defines a security context. Then, the admin edits

the Distributed Security Policy (DSP). Through this, he/she set the communication

mode (secure, no secure) between the processes of the same set or the the processes

of different sets. This at process level, transparently to the developers, i.e.; there is

no need to modify the program.

9.5 Destination IP address modification

9.5.1 Modification during connection establishment

In the case of a connection established between the client and the server, there is a call

to the connect(...) function, followed by the system call sys connect(...)function. The

destination IP address will be modified in the security hook (dsi socket connect(...))

inside the system call sys connect(...). Whenever a client opens a connection to a

server, the right IP address will be assigned to the socket.

9.5.2 Modification without connection establishment

In this case, there is no call to the connect(...) function since there is no con-

nection to be established. The user level applications call directly sendto(...) or ,

sendmsg(...)function. Inside of the system call of both functions (sys send(...) and

sys sendmsg(...)), there is a call to the sock sendmsg(...) function which contains a

security hook (dsi socket sendmsg(...)). The destination IP address can be modified

inside of that security hook.

9.6. Source IP address modification 55

Figure 9.1: Connect method

9.6 Source IP address modification

9.6.1 Modification with connection establishment

In the security hook dsi socket connect(...) , the client can also choose its own

source IP address to use for the connection. The source IP address of the client can

be modified in that security hook.

On the server side, the source IP address can be modified in the security hook

dsi socket bind(...) . Although, we assume that servers will listen on 0.0.0.0, so we

have disabled this functionality.

9.6.2 Modification without connection establishment

The source IP address can be modified in the security hook dsi socket sendmsg for

the client and the server.

Remark: the right source IP address is chosen automatically from the routing table

depending on the destination IP address, which means that it doesn’t need to be

modified manually.

9.6.3 UDP IP transition during an active connection

DisCI now defines a mechanism to change destination IP address of a UDP socket

at any time during its lifetime.

There are two possible scenarios that would require changing the destination IP of

an UDP socket after its creation: a DSP change concerning DisCI modes of com-

munication, and changing IP addresses of the node itself. The second case is not

supported by DisCI, since it does not represent typical node behavior. However, if

an administrator needs to change the communication mode from ’not secure’ to ESP

for certain SIDs, the DSP change will also trigger an IP change in UDP sockets.

56 Chapter 9. Distributed Confidentiality and Integrity service (DisCI)

Figure 9.2: Send method

When changing destination IP of an UDP socket, the change is replicated through-

out the cluster nodes by way of SCC. For any communication involving a server

and a client within the cluster, both listening socket and sending socket will switch

subnets. For instance, node 172.1.1.1 is serving UDP requests from 172.1.1.2. After

DSP change from ’not secure’ to ’ESP’, node 172.1.2.1 will now serve requests from

172.1.2.2.

If an external server, listening on all interfaces (0.0.0.0), were serving requests from

a client inside the cluster, communication would remain unaffected after a change of

IP addresses on the client side. There are two reasons for this. First of all, external

addresses remain unchanged in UDP sockets, on the client side in this case. Second,

since UDP is connectionless and the server is listening on all interfaces, UDP packets

will still reach their destination.

One difficulty in implementing this mechanism was understanding properly how the

Linux network stack handled IP addresses. Changing the socket structure’s IP ad-

dress member was insufficient. The destination routing cache of the socket also had

to be cleared in order for the Linux network stack to lookup the new route for the

new IP destination.

9.6.4 TCP IP transition difficulties

Applying the same mechanism to TCP sockets is much more difficult and has not

been implemented in DisCI at the time of writing. There are a few reasons why

changing IP addresses in a TCP socket is difficult.

First consideration, TCP is stateful and reliable. TCP protocol implements different

mechanisms to detect packet modification, whether it be within the kernel or on the

wire.

Also, depending on network stack implementations and operating systems, TCP

connections must be maintained internally since they are stateful. Manipulating a

TCP socket’s IP address, source or destination, can affect how the operating system

9.7. IP Options Modification 57

identifies a socket.

Thirdly, if during an IP transition one of the endpoints were to send a packet to

the previous address, TCP protocol requires that an RST packet be sent if there

is no longer any socket listening at the specified destination, which is our case.

Unfortunately, a RST packet will partially destroy the TCP connection and confuse

one of the endpoints.

Finally, instead of implementing a mechanism ourselves, we opted to integrate a third

party solution. Some solutions are available, although we have not decided which

one is most appropriate.

9.7 IP Options Modification

For coordinated network security to be possible, nodes within the cluster must be

able to communicate ScIDs of client and server processes. Using the same approach

as SELinux, DisCI sends ScIDs via the IP options field of a packet, the CIPSO option.

If each node were to have a unique node security ID (SnID), it would be possible to

perform ScID mapping between two nodes with different security contexts. At the

time of writing, DSI does assign a NSID to nodes, but assumes that a ScID has the

same context on all nodes.

The IP option modification is based on CIPSO and FIPS-188 standards.

The IP option, CIPSO, follows this specific format recognized by DisCI:

+--------+--------+

| CIPSO | Length |

+--------+--------+--------+--------+

| Domain Of Interpretation |

+--------+--------+--------+--------+

|Freeform| Length | ScID | Length |

+--------+--------+--------+--------+

| Data |

+--------+--------+--------+--------+

| NodeID | Length | Data |

+--------+--------+--------+--------+

| (con’t) Data |

+--------+--------+

The first field, CIPSO, is the number of the IP option. Since this option is officially

recognized, the chance of a packet with this option passing routers is increased,

however, this only applies inside a DSI cluster. Packets with outside destinations do

not have IP options. Next, length defines the entire length of the option including

the CIPSO and length fields. The domain of interpretation is not used by DisCI,

but included to be CIPSO compliant. Freeform means that we are defining our own

fields and not using CIPSO pre-defined fields. The second length is the remaining

length in the option including the freeform and length fields. ’SID’ is not actually the

ScID of the process but an identifier indicating that following data will be a ScID.

The third length is the length of the data including the ScID and length fields. The

data field contains the SID. NodeID is an identifier, ’length’ is length of data plus

previous two fields. The data field contains the NodeID.

58 Chapter 9. Distributed Confidentiality and Integrity service (DisCI)

When a packet arrives at a remote node, the ScID is stored in the security structure

of the packet.

Important remark: the process sending the packet might not be the current process

when the kernel actually sends the packet, because there is a process of queueing

involved. As a test case, we had 100 threads send 1 ping each with the unique ScID

of the sending process in the data of the ping and the ScID of the current process in

the IP options. 2 out of 25 pings did not have the correct SID.

9.8 Digital Signatures

There are different levels of operations defined by DSP as defined in the section

10. For time being, we plan to use already existing open source projects to do this.

Precisely, Tripwire for the level 1 and CryptoMark for level 3.

9.9 Open Questions

9.9.1 User Mode Linux

Problem

Cannot apply the LSM patch to the UML kernel.

Possible solution

In fact, there are some arch-specific (I386) stuff in the LSM patch. It is possible and

easy to patch UML manually by applying the same modifications to the ’uml’ arch

as those applied to the I386 by the patch. Patch UML first, then LSM and do the

following modifications :

1.Add the following line at the end of the /usr/src/uml/um/config.in file

Source security/config.in

2.Do the modifications to the /usr/src/uml/Arch/uml/kernel/ sys call table.c file

a. add the following line below extern syscall_handler_t sys_gettid

extern syscall_handler_t sys_security

b. find the line below, remove it and replace it by the line at c.

[__NR_security] = sys_ni_syscall

c. add the line below

[__NR_security] = sys_security

To-Do : test whether it works.

9.10. DisCI Conclusion 59

9.9.2 Freeswan1.96

Problem

Freeswan1.96 doesn’t support packets employing IP options.

Solution

The bug is fixed. Here is the patch that can be applied to freeswan1.96.

File freeswan1_96_ip_option-13-august-2002.patch

--- ipsec_tunnel.c Mon Aug 12 14:53:16 2002

+++ ipsec_tunnel.c.modif Mon Aug 12 15:10:03 2002

@@ -601,7 +601,7 @@

* Sanity checks

*/

-if ((iph->ihl << 2) != sizeof (struct iphdr)) {

+ if (0)/*((iph->ihl << 2) != sizeof (struct iphdr))*/ {

KLIPS_PRINT(debug_tunnel,

"klips_debug:ipsec_tunnel_start_xmit: "

"cannot process IP header options yet. May be mal-formed packet.\n"); /*XXX*/

@@ -1142,6 +1142,7 @@

#ifdef CONFIG_IPSEC_IPIP

case IPPROTO_IPIP:

headroom += sizeof(struct iphdr);

+ pyldsz += iphlen - sizeof(struct iphdr);

break;

#endif /* !CONFIG_IPSEC_IPIP */

case IPPROTO_COMP:

@@ -1443,6 +1444,7 @@

#ifdef CONFIG_IPSEC_IPIP

case IPPROTO_IPIP:

headroom += sizeof(struct iphdr);

+ iphlen = sizeof(struct iphdr);

break;

#endif /* !CONFIG_IPSEC_IPIP */

#ifdef CONFIG_IPSEC_IPCOMP

9.10 DisCI Conclusion

The results show clearly that the socket layer approach works very well. It has

several advantages. First of all, it satisfies DisCI needs. Second, the implementation

is done in DSM, so there is no need to make another module. Third, the IP address

modifications have been done at high level in such a way that it will not confuse the

system and will have less impact if the TCP/IP stacks change in the future. Fourth,

it is simple to implement, flexible to future changes and needs.

60 Chapter 9. Distributed Confidentiality and Integrity service (DisCI)

Chapter 10

Integrity service

In this chapter, we explain the preliminary ideas for the integrity service

of DSI.

10.1 Introduction

The Integrity Service we refer to here does not deal with integrity of communications

between processes (which is taken in charge by the DisCI module, chapter), but with

integrity of files on various nodes of the cluster.

For instance, we should protect (1) the kernel from loading unauthorized or malicious

kernel loadable modules, (2) executing unsecure code (such as virii) and (3) individual

files from malicious modification (such as the DSP file etc).

The former is currently being investigated, maybe using a tools such as Cryptomark[2].

There is no implementation yet.

10.2 Levels of digital signature verification

Digital signature verification could be set through DSP to different levels:

• Level 1: Digital signatures verification at user-level: in order to avoid the in-

stallation of malicious software, digital signatures are added to binaries. These

digital signatures are periodically checked (by preference as a background task,

during low-level load period for the server) and if any incoherence is detected,

the alarms are sent to the security server.

• Level 2: Digital signatures verification when loading from hard disk for the

first time.

• Level 3: The signature for binaries is verified each time that they are used to

create a new process (execv+fork).

61

62 Chapter 10. Integrity service

Chapter 11

Tools

In this chapter we explain different tools implemented.

At the time of writing, LSM mailing list is reporting that the integration of LSM

patch in kernel tree will possibly discard the system call sys security. The majority

of the tools described lower will be directly affected if this is the case.

In prevision of this removal and to prevent major modification of these tools, we

have started implementing a char device interface to communicate with the module.

The char device takes a string argument containing a number identifing the action

to be performed followed by the number of arguments required by the action. For

more detail see section 5.4.

11.1 DciInit

The DciInit tool directly calls a system call implemented by DSM, named sys security

(ref 5.7). DciInit is responsible for defining the IP addresses that DCI will be using

(ref ??). The only parameter passed to DciInit is the filename for DCI configuration.

11.2 UpdatePolicy

The UpdatePolicy tool is a helper tool that reads the DSP file passed as argument

and directly calls the sys security (ref 5.7) to load the rules in the DSM of the

node. UpdatePolicy will load each line of the policy file into DSM’s cache. The only

parameter required by UpdatePolicy is the policy filename. Beware: this tools does

not propagate the policy to other nodes.

Do not confuse this tool with the dsiUpdatePolicy tool in dsi/SS/test/demoSecOM

which sends an XML UpdatePolicy event (see §8.1.4)to the local SS, the SS reading

and analyzing the policy and then propagating the policy to all SMs.

11.3 dsiUpdatePolicy

This tool is currently found in dsi/SS/test/demoSecOM. It takes the DSP file as

argument. It should be launched only on the SS node. It sends an XML UpdatePolicy

63

64 Chapter 11. Tools

event to the SS with the DSP file as argument. The DSP file is then loaded, validated,

and propagated to all SMs.

$ cd ~/dsi/SS/test/demoSecOM/

$./dsiUpdatePolicy ~/dsi-0.2/etc/DSP.xml

11.4 ChangeProcSID

The ChangeProcSID tool directly calls a system call implemented by DSM, named

sys security (ref 5.7). ChangeProcSID will change the ScID of the given Process ID

(PID). This tool takes two parameters: the PID of the process and the new ScID.

11.5 SetSID

SetSID is similar to ChangeProcSID, but this tool will set the ScID of a binary.

Subsequently, when the binary is executed, it will use the ScID stored in its disk

image. SetSID takes two parameters: the filename of the binary and the new ScID.

The ScID will be stored in the binary file. Note: this will not affect processes already

running, use ChangeProcSID to that effect.

11.6 SS Console

TO BE COMPLETED.

11.7 SetNodeID

TO BE COMPLETED.

11.8 ls dsi

ls dsi is a DSI tool, similar to the native linux ls command, which lists the content of

a directory as well as the ScID embedded in binary files (BScID). To use ls dsi, you

can either enter the directory of interest and type ls dsi, as shown below, or you can

simply give the path of the directory as an argument. Since every linux configuration

is different, you may need to give the whole path to ls dsi in order to execute it.

[lmcgaii@lmcpc116076 server]# cd /dsi/user/server

[lmcgaii@lmcpc116076 server]# /home/lmcgaii/dsi/user/tools/ls_dsi

PERMISSION USER GROUP BScID FILE

drwxr-xr-x lmcgaii lmcgaii - CVS

-rwxr-xr-x root root 6 UDPServer

-rwxr-xr-x lmcgaii lmcgaii - Makefile

-rw-r--r-- lmcgaii lmcgaii - TCPServer.c

-rwxr-xr-x lmcgaii lmcgaii - UDPServer.c

-rwxr-xr-x root root 3 TCPServer

11.9. ps dsi 65

[lmcgaii@lmcpc116076 tools]# ./ls_dsi /home/lmcgaii/dsi/user/server

PERMISSION USER GROUP BScID FILE

drwxr-xr-x lmcgaii lmcgaii - CVS

-rwxr-xr-x root root 6 UDPServer

-rwxr-xr-x lmcgaii lmcgaii - Makefile

-rw-r--r-- lmcgaii lmcgaii - TCPServer.c

-rwxr-xr-x lmcgaii lmcgaii - UDPServer.c

-rwxr-xr-x root root 3 TCPServer

The BScID field is the field that presents the most interest; it gives for each executable

file (e.g. emacs, apache, etc.) the ScID that is embedded in its ELF format. Note

however that not all executables have ScIDs. Files that are not in the ELF format

do not have an ScID, hence ls dsi prints ’-’ when it encounters those types of file.

One can easily assign or change the ScID of an ELF file by using the SetSID tool.

11.9 ps dsi

ps dsi is a DSI tool, similar to the native linux ps command, which lists important

information about running processes including their respective ScIDs. Note that the

ScID of a process may refer to both source or target security contexts. Before using

the ps dsi tool, ensure that the DSM module (/dsi/lsm/dsm.o) is loaded in the kernel

since ps dsi executes a system call to this module in order to get a process’s ScID. If

the DSM module is not loaded, ps dsi will print out ’-’ instead of the process’s ScID.

As shown below, to list information about running pocesses, just type ps dsi. Once

again, depending on your linux configuration, you may need to give the whole path

to ps dsi in order to execute it.

[lmcgaii@lmcpc116076 tools]# ./ps_dsi

PID ScID USER STAT CMD

1 2 root S init

2 2 root S keventd

3 2 root S ksoftirqd_CPU0

4 2 root S kswapd

...

3912 1 telorb S bash

4059 2 telorb S bash

4534 2 telorb S bash

4565 2 telorb S bash

4601 3 telorb S xemacs

4626 2 telorb S xemacs

4709 2 telorb S UDPServer

4710 3 telorb S UDPclient

4717 2 telorb R ps_dsi

As the DSM module is loaded, each existing process gets a default ScID, which,

by our convention, is 2 (DSI SID NORMAL). The creation of each new process is

governed by the rules defined in the policy test file (especially the class transition

rules which defines what ScID a new process will get depending on its parent) for

instance, a process having a BScID=3 may end up running with an ScID=2 if such

66 Chapter 11. Tools

a class transition exists. It is possible to create new transition rules by editing the

policy test file and updating the policy using UpdatePolicy or to assign new ScIDs

to running processes with ChangeProcSID.

11.10 PrintPolicy

This tool offers the capability to dump all the rules currently loaded in the DSM.

The rules are dumped in the /var/log/messages log file. PrintPolicy can be useful

for debugging purposes or simply to understand what goes on inside DSM.

PrintPolicy will print out rules in DSM numerical rule format as opposed to the

DSP’s XML rule format. Preceding each rule in between brackets, is the slot number

where the rule resides in the dsi cache array. There may be many rules residing in

the same slot and all the rules in a single slot are joined together to create a chained

list. Finally, the number of rules currently enforced by DSM and the number of free

nodes available for new rules are printed out.

Apr 9 19:02:12 lmcpc116076 kernel: START OF THE CURRENT DSM SECURITY POLICY

Apr 9 19:02:12 lmcpc116076 kernel: [3] 12 0 0 0 3 0xffffffff

Apr 9 19:02:12 lmcpc116076 kernel: [3] 2 0 0 0 3 0xffffffff

Apr 9 19:02:12 lmcpc116076 kernel: [17] 12 1 12 1 1 0xffffffff

Apr 9 19:02:12 lmcpc116076 kernel: [17] 3 1 2 1 1 0xffffffff

Apr 9 19:02:12 lmcpc116076 kernel: [17] 2 1 2 1 1 0xffffffff

Apr 9 19:02:12 lmcpc116076 kernel: [17] 1 1 2 1 1 0xffffffff

...

Apr 9 19:02:12 lmcpc116076 kernel: [274] 1 1 3 1 2 0xffffffff

Apr 9 19:02:12 lmcpc116076 kernel: [274] 1 1 1 1 2 0xffffffff

Apr 9 19:02:12 lmcpc116076 kernel: [275] 12 1 1 1 3 0xffffffff

Apr 9 19:02:12 lmcpc116076 kernel: [275] 3 1 3 1 3 0xffffffff

...

Apr 9 19:02:12 lmcpc116076 kernel: [277] 2 1 1 1 5 0x1

Apr 9 19:02:12 lmcpc116076 kernel: [277] 1 1 3 1 5 0x1

Apr 9 19:02:12 lmcpc116076 kernel: [277] 1 1 1 1 5 0x1

Apr 9 19:02:12 lmcpc116076 kernel: TOTAL RULES: 55

Apr 9 19:02:12 lmcpc116076 kernel: FREE NODES: 355

Apr 9 19:02:12 lmcpc116076 kernel: END OF THE CURRENT DSM SECURITY POLICY

The printk messages used to print the rules loaded in DSM are sent to Syslog and

usually, it redirects those messages to /var/log/messages. If you don’t want the policy

to be printed there you can always send it to the console by editing /etc/syslog.conf

and removing the #kern.* commented line :

Log all kernel messages to the console.

Logging much else clutters up the screen.

kern.* /dev/console

Once you’ve uncommented the line, you have to kill and restart Syslogd. Finally, as

root, launch the xconsole.

Chapter 12

Testing DSI

In this chapter, we discuss a set of tests useful to check DSI’s features

and performance.

12.1 Client Server Test Programs

To test network functionality in DSI, TCP and UDP servers have been created along

with their associated clients. Clients simply send ’Hello server’ to the server. In

UDP mode, the server does not answer. Whereas, in TCP mode, the protocol forces

a response in the form of ACKs.

Client programs are to be found in $DSI ROOT DIR/user/client. . The socket client.c

See TCPclient.c

and UDPclient.c

in $DSI_ROOT_

DIR/user/clientfile tests all client-side socket functions.

Server programs are to be found in $DSI ROOT DIR/user/server. . Servers listen See TCPServer.c

and UDPServer.c

in $DSI_ROOT_

DIR/user/client

on 127.0.0.1 (or on all interfaces if 0.0.0.0 is used), port 8800.

Those programs may be used to test DSI’s network functionalities. Start the server

first, and then the client.

12.2 DSM filesystem testing

The DSM filesystem tests concern different functionality in DSM. Mainly, tests are

run at kernel level and the results are written to the /var/log/messages file.

1. Load DSM.

2. check the major/minor number through

[root@colby lsm]# cat /proc/devices

....

254 DSI_module

....

3. The major number being found (in above example 254), we make the char

device file /dev/DSI module

67

68 Chapter 12. Testing DSI

root@colby#mknod /dev/DSI_module c 254 0

root@colby# ls -l /dev/DSI_module

crw-r--r-- 1 root root 254, 0 Feb 14 16:24 /dev/DSI_module

4. Once the file has been created by mknod command, you can use any tool

to write into the /dev/DSI module device. For example, write down your

command line into a file and cat the file to /dev/DSI module. For example:

[root@colby lsm]#cat args_test

7 2 3 4 5 6 0x01

[root@colby lsm]# cat args_test > /dev/DSI_module

Notice that there is only the first argument which is important. The other

arguments are just to comply with the general rule of waiting for 6 arguments.

5. Check the results of the filesystem testing in /var/log/messages file.

12.3 DSM unit testing

DSM can be separated into eight main areas of action: device, cache, tasks, inode,

netlink, socket, access control, and DCI. For each area, separate unit tests have been

designed and can be found in dsi/lsm/dsi test.c. The function of unit testing is

to make sure basic functionality is still present independent of its implementation.

Some important exceptional cases are also tested, however, it must be noted that

unit testing is not an ultimate certification of the code. Developers are encouraged

to write unit tests for each new functionality added.

To start the unit testing, a userland tool is provided in dsi/user/tools named TestDSM.

No parameters are required, simply that DSM module be loaded in kernel memory.

To start testing:

% cd dsi/user/tools

% ./TestDSM

Results will be output to /var/log/messages or to console depending on the settings

in syslog.conf.

IMPORTANT: Using TestDSM will make DSM module insecure! This tool changes

the policy and other internal information for testing and has not been implemented

to restore original internal settings. It does restore to the extent that the following

test might need a consistent state for DSM, but DSM must be reloaded to ensure

proper security.

12.4 DSM automatic scenario testing

To complement unit testing which is internal to the DSM kernel module, a func-

tional testing framework has been defined. The perl module named scenario.pm in

12.5. DisCI functionality tests 69

dsi/user/test contains utilities to build scenarios for testing user applications with

DSM.

• start app: Start application and return its pipe. Caller is responsible for closing

the pipe.

• stop app: Kill application using SIGTERM, which allows program to define a

signal handler to flush its stream to logfile (SIGKILL cannot be trapped).

• check log: Check application log for a specified string.

• print title: Print title of a test clearly.

An example scenario is shown in perl script dsi/user/test/scenarioA.pl. It performs

three tests between client TelecomClient and servers RingBellBE/EP and PhoneMa-

niaBE/EP. The first test simply makes sure that basic connectivity can be established

between the client, entry point (EP), and back end (BE). The second test performs

the same operations, but with DSM. The last test tries connecting an entry point

with a back end it is not supposed to be able to talk to (because SCIDs are arranged

for this in the policy file). After each timed test, the logs are checked for specified

strings to confirm results. It is suggested to look at the requirements listed at the

begining of scenarioA.pl before starting.

It’s important that applications tested with perl script utilities meet certain require-

ments. In the case of scenario A, the client and servers write their PID in a file with

the same name as the executable postfixed with ’.pid’. They also write output to

a log file with same name and postfixed with ’.log’. These files are automatically

deleted by the perl script after tests are done.

To start scenario A, current working directory is very important:

% cd dsi/user/test

% ./scenarioA.pl

Results will be summarized at the end of all tests on console and details of execution

can be seen in console during execution.

12.5 DisCI functionality tests

12.5.1 Context

DisCI (Distributed Confidentiality and Integrity) services provide three channels

associated to IPSec transmission modes: No Security mode, AH mode and ESP

mode. Currently, each of those channels corresponds to an IP address1 (see chapter

??). This justifies why each node is assigned three IP addresses that are associated

to each transmission mode. The DSP specifies the communication channel that a

given subject identified by a ScID on node SnID can use to reach a target object

identified by a TScID on node TSnID.

At kernel level, permissions are represented using the following format:

SScID SSnID TScID TSnID CLASS PERMISSION

1Work is under progress to find another solution.

70 Chapter 12. Testing DSI

This is only an internal format, the end user writes rules according to DSP’s syntax

(see section 7).

DisCI permissions are represented by the specific DSI CLASS DCI class (0x5). ForSee dsi.h in lsm

instance, if a client application with SScID = 1 on node SSnID = 0 is allowed to

connect to a server application with TScID = 1 on node TSnID = 1 in ESP mode

(0x3) then, at kernel level, this is represented by :

1 0 1 1 5 0x003

Whenever a communication is initiated between a source node and a target node, the

source node’s IP address and/or the destination node’s IP address are modified to

match the permission granted in the DSP File for SScID/SSnID and TScID/TSnID

involved.

12.5.2 Steps to Verify DisCI Functionality

1. Make sure you assigned the 3 IP addresses to each machine in the correct

format. This can be done for the client by creating aliases to your network

interface such as:

% ifconfig eth0:1 172.1.1.2 up

% ifconfig eth0:2 172.1.2.2 up

% ifconfig eth0:3 172.1.3.2 up

On the server side:

% ifconfig eth0:1 172.1.1.3 up

% ifconfig eth0:2 172.1.2.3 up

% ifconfig eth0:3 172.1.3.3 up

We also assume you edited dai policy.conf file at each node (client machine and server

machine) to define the associations between each IP address and the mode it will be

used for :
See dsi dci.h in

$DSI ROOT DIR/lsm

• 0x00000001 is for No Secure Mode,

• 0x00000002 is for AH mode

• and 0x00000004 for ESP mode.

First test the “no security” mode:

• Go to DSP file on the security server machine of DSI demo:

% cd /root/dsi/etc/DSP

• Add to the file the following lines:

1 0 1 1 5 0x00000001

3 0 1 1 5 0x00000002

3 0 3 1 5 0x00000004

12.5. DisCI functionality tests 71

• . Update the policy on the security server machine

% cd /root/dsi/SS/test/demoSecOM

% ./dsiUpdatePolicy

• Set the server ScID to 1 on the server machine

% cd /root/dsi/user/server

% SetSID UDPServer 1

• Start the server application

% ./UDPServer

• Set the client ScID to 1 on the client machine

% cd /root/dsi/user/client

% SetSID UDPClient 1

• Start the client application

% ./UDPClient

• Launch a sniffer on the client side to watch the traffic between the client and

the server

% ethereal &

When SScID and TScID are both set to 1, DSP file allows “No Secure communica-

tion” mode between node SSnID = 0 and TSnID = 1. You can check that packets

sent by the client to the server have the source IP address 172.1.1.2. No modification

has been done to the server IP address.

Then, test for instance AH communication:

• Stop the client application on the client machine

• Set the client ScID to 3

% cd /root/dsi/user/client

% SetSID UDPClient 3

• Restart the client application

% ./UDPClient

72 Chapter 12. Testing DSI

When SScID is set to 3 and TScID to 1, DSP file allows AH communcation mode

between node 0 and 1. You can check that packets sent by the client to the server have

the source IP address 172.1.2.2 though the client IP address was previously 172.1.1.2.

The packets destination IP address is now 172.1.2.3 (previously 172.1.1.3). So a

modification has been performed on the server IP address to match the permitted

specified IP address.

Finally, test the ESP mode:

• Stop both server and client application

• Set the server ScID to 3 on the server machine

% cd /root/dsi/user/server

% SetSID UDPServer 3

• Restart the server application

% ./UDPServer

• Restart the client application on the client machine

% ./UDPClient

Both SScID and TScID are now set to 3. DSP allows ESP communication mode

between node SSnID = 0 and TSnID = 1.

12.5.3 Integration Tests

Integration means that the DSM code and the IP modification code are put together.

The tests below show the results of the integration.

Case A: DSM + DisCI

TEST Without IPSEC with IPSEC

Mount nfs (predator) Ok Ok

Netscape direct connection Ok Ok

Netscape proxy (Internet) Ok Ok

Telnet, Ftp, ssh Ok Ok

Demo Ok Ok

Ping Ok Ok

Case B : DSM + DisCI + IP option

TEST Without IPSEC with IPSEC

Mount nfs OK Not tested (should be OK)

Netscape direct connection OK OK

Netscape proxy (Internet) FAILED (normal) FAILED (normal)

Telnet OK OK

Ssh FAILED (normal) FAILED (normal)

Demo OK OK

Chapter 13

Debugging DSM

This chapter describes the approach taken for debugging DSM.

13.1 dsi debug.h

When programming LKMs, userland debugging techniques become unavailable. For

instance, one way to interactively debug a kernel module would be with kdb in

assembler or kgdb through the serial port. The other alternative is using printk.

For efficient use of printk, a number of debugging levels, or classes, have been defined.

The global debugging level is represented by a vector of bits, each bit represents a

different debugging class. This means that different levels can be combined or selected

individually.

In dsi debug.h , a global debugging variable is set at compile time. In the module,
See DSM PRINT()

in

lsm/dsi debug.hwhen debug output is necessary, the DSM PRINT definition is used. It takes as

parameters the level of debugging, the string format, and an arbitrary number of

arguments. This is very similar to printf, except for the custom debug level. Next,

a simple check (logical AND) is performed with the parameter debug level and the

global debugging variable. If two bits correspond, then the string is output with

printk.

13.2 Buffering and printk

The purpose of logging and debugging is obtaining information from the program in

a reliable fashion. There is an issue with printk, since its output string is buffered.

Here is an excerpt from printk source code:
See printk() in

kernel/printk.c

394 /*

395 * This is printk. It can be called from any context. We want it to work.

396 *

397 * We try to grab the console_sem. If we succeed, it’s easy - we log the output and

398 * call the console drivers. If we fail to get the semaphore we place the output

399 * into the log buffer and return. The current holder of the console_sem will

400 * notice the new output in release_console_sem() and will send it to the

73

74 Chapter 13. Debugging DSM

401 * consoles before releasing the semaphore.

402 *

403 * One effect of this deferred printing is that code which calls printk() and

404 * then changes console_loglevel may break. This is because console_loglevel

405 * is inspected when the actual printing occurs.

406 */

495 /**

496 * release_console_sem - unlock the console system

497 *

498 * Releases the semaphore which the caller holds on the console system

499 * and the console driver list.

500 *

501 * While the semaphore was held, console output may have been buffered

502 * by printk(). If this is the case, release_console_sem() emits

503 * the output prior to releasing the semaphore.

504 *

505 * If there is output waiting for klogd, we wake it up.

506 *

507 * release_console_sem() may be called from any context.

508 */

The problem is that printk might possibly never log an entry in certain rare condi-

tions. A possible solution might be to look into the mechanism of the Linux Trace

Toolkit. At the time of writing, this potential problem has not been solved.

Chapter 14

Benchmarking DSI

14.1 LMBench results

We ran LMBench 3.0 [11] on a Linux 2.4.17 kernel running on a Intel Pentium IV

2.4 GHz to test the impact of DSI security mechanisms on the system. Tests have

been performed ten times on two different configurations:

• Base: a “basic” 2.4.17 kernel with the LSM [22] patch, without any security

check performed. This configuration is used as reference for comparisons,

• DSM: the same patched kernel, with the DSM module loaded, implementing

different security mechanisms defined above.

Average total overhead due to DSM has then been calculated (see Table 14.1).

A detailed explanation of tests can be found at [11]. The stat test measures the time

to invoke the stat system call on a temporary file. The open/close test measures

how long it takes to open a file for reading and immediately close it.

Concerning the fork, exec and sh proc tests, they respectively measure how long it

takes to fork a new process, launch a new process using execve, and execute a shell

that spawns a new process.

In some cases (stat, sh proc), DSM improves the base. Of course, this is impossible,

and we believe it only means that overhead is not significant and that benchmarks

should be run on more than 10 samples.

UDP and TCP latency tests are performed by having client and server loop on

exchanging a message of 4 bytes. The RPC tests are similar, but using Sun’s RPC

layer over TCP or UDP.

For TCP and UDP tests, DSM’s overhead ranges from 9 to 15% as security checks

have to be done before processes are allowed to communicate and at the reception of

each IP packet. We are currently working to reduce this overhead, and preliminary

efforts show so far that if DSI security mechanisms are implemented at driver level,

the overhead can be reduced till less than 4%.

For RPC tests, as the overhead due to RPC connections increases in the total time

of communication, the overhead due to security checks decreases in percentage.

Furthermore, we performed performances with NetIO testing tool. This tool mea-

sures the performances for already established TCP connections. Results presented

75

76 Chapter 14. Benchmarking DSI

Test type Base DSM Overhead

Stat 1.98 1.94 -2.0%

Open / Close 2.68 2.68 0%

Fork 92.81 93.58 0.82%

Exec 322.56 328.33 1.78%

Sh proc 2150 2140.75 -0.43%

UDP 9.68 10.61 9.6%

RPC/UDP 17.66 18.7 5.9%

TCP 11.08 12.68 14.4%

RPC/TCP 23.42 24.3 3.75%

Table 14.1: Comparison of performances between a LSM patched kernel without any

security mechanisms implemented and a kernel supporting DSI distributed security

services. Time units are microseconds.

in table 14.2 shows clearly that the overhead of DisAC for already established con-

nections varies between the worst case 3% for short messages to an average of 1%.

Message size Base DSM Overhead

1 KBytes 11497 11132 3%

2 K Bytes 11440 11281 1%

4 K Bytes 11330 11328 0%

8 K Bytes 11494 11290 2%

16 K Bytes 11438 11275 1%

32 K Bytes 11449 11331 1%

Table 14.2: Comparison of performances between a LSM patched kernel without any

security mechanisms implemented and a kernel supporting DSI distributed security

services. Bandwidth between 2 machiens is presented according to the message size

in KBytes/sec.

Those results are quite encouraging. Moreover, one should note that all communica-

tion related tests have been performed locally on a single node; whereas DSI targets

communications over a network where the overhead due to the network latency will

reduce DSI’s impact on performances. Work is currently under progress to optimize

DSI code and measure DSI’s performance in a real clustered environment.

14.2 DisCI Benchmarks

14.2.1 Dgram

Server: testar1, doesn’t need to run anything.

Client: testar2, run dgram and ncdgram (no connection)

Characteristics

14.2. DisCI Benchmarks 77

Machine : testar1 testar2

Processor : Pentium III 400 MHz Pentium III 500 MHz

Cache Size : 256 KB 512 KB

Memories : 256 MB 256 MHz

OS : Linux, Red Hat 7.2 Linux, Red Hat 7.2

Kernel : 2.4.17 2.4.17

Module Overhead

NO LSM LSM LSM+DisCI LSM LSM+DisCI DisCI

With connection 10.300 11.693 11.805 13.5% 14.6% 1.0%

Without connection 10.387 11.575 12.480 11.4% 20.1% 7.8%

14.2.2 Dgramresp

Server: testar1, run servresp

Client: testar2, run dgramresp and ncdgramresp (no connection)

Module Overhead

NO LSM LSM LSM+DisCI LSM LSM+DisCI DisCI

With connection 8.915 10.354 10.623 16.2% 19.2% 2.6%

Without connection 9.016 10.343 10.678 14.7% 18.4% 3.2 %

78 Chapter 14. Benchmarking DSI

References

http://www.kernel.org/ Kernel repository.

http://www.nsa.gov/selinux/ SELinux created by NSA and also based on LSM

patch to the kernel.

http://lsm.immunix.org/ The Linux Security Modules (LSM) project provides a

lightweight, general purpose framework for access control.

http://www.linuxjournal.com/article.php?sid=6053 The Linux Journal fea-

turing an article on DSI.

79

80 Appendix . References

Glossary

AVL Access Vector List

DisAC DIStributed Access Control

DisCI DIStributed Confidentiality and Integrity

DSI Distributed Security Infrastructure

DSM Distributed Security Module

DSP Distributed Security Policy

LKM Linux Kernel Module

ScID Security Context IDentification

SnID Security Node IDentifier

SScID Source Security Context IDentification

TScID Target Security Context IDentification

81

82 Appendix . Glossary

Bibliography

[1] Apvrille A., Pourzandi M., Protéger un réseau de machines distribuées contre un

débordement de buffer... d’un seul coup, MISC 7, May - June 2003 (in French),

http://www.miscmag.com

[2] Cryptomark http://www.immunix.org/cryptomark.html

[3] Document Object Model (DOM) http://www.w3c.org/DOM/

[4] Dragovic, B. LinSec - Linux Security Protection System University College Lon-

don, April 2002, http://www.linsec.org/doc/final.

[5] Foster I., Kesselman C., Tsudik G., Tuecke G. A Security Architecture for Com-

putational Grids 5th ACM Conference on Computer and Communication Secu-

rity

[6] ITU-U Recommendation X.800 Security Architecture for Open Systems Inter-

connection for CCITT Applications ITU-T (then CCITT), 1991

[7] ISO 10181-3 Security Frameworks for Open Systems: Access Control Framework

ISO, 1996

[8] Loscocco P. Security-Enhanced Linux Linux 2.5 Kernel Summit, San Jose (Ca)

USA, 2001, http://www.nsa.gov/selinux/docs.html

[9] Loscocco P., Smalley S. Integrating Flexible Support for Security Policies in the

Linux Operating System, in the Proceedings of the FREENIX track of the 2001

USENIX Annual Technical Conference, 2001, http://www.nsa.gov/selinux.

[10] LSM development team Linux Security-Module (LSM) framework 2001, http:

//lsm.immunix.org/

[11] Mc Voy L., Staelin C. LmBench: portable tools for performance analysis, in

Proceedings of the 1996 USENIX Annual Technical Conference, http://www.

bitmover.com/lmbench.

[12] MontaVista MontaVista Linux Carrier Grade, Edition 2.1, White paper, http:

//www.montavista.com/dswp/index.html

[13] Morris, J. Selopt: Labeled IPv4 networking for SE Linux http://www.

intercode.com.au/jmorris/selopt

[14] Grisby D., Sai-Lai L. The omniORB version 4.0 User’s Guide August 2002,

http://omniorb.sourceforge.net

[15] omniEvents http://sourceforge.net/projects/omnievents

83

84 BIBLIOGRAPHY

[16] Open Source Development Lab, Carrier Grade Linux, http://www.osdl.org/

projects/cgl

[17] Pourzandi M., Apvrille A., Gingras E., Medenou A., Gordon D., Distributed

Access Control for Carrier Class Clusters, Parallel and Distributed Processing

Techniques and Applications (PDPTA’03), Las Vegas, June 2003 (to appear),

http://www.ashland.edu/~iajwa/conferences/2003/PDPTA/pdpta.html

[18] Pourzandi M., Haddad I., Levert C., Zakrzewski M., Dagenais M., A Distributed

Security Infrastructure for Carrier Class Linux, in Proceedings of the Fourth

Annual Ottawa Linux Symposium , 2002.

[19] SAX. http://sax.sourceforge.net

[20] Schreiner R., Lang U. MicoSec User’s Guide http://www.objectsecurity.

com/micosec.html

[21] Spencer R., Smalley S., Loscocco P., Hibler M., Andersen D., Lepreau J., The

Flask Security Architecture: System Support for Diverse Security Policies, in

the Proceedings of the 1999 USENIX Security Symposium.

[22] Wright C., Cowan C., Smalley S., Morris J., Kroah-Hartmann G., Linux Security

Modules: General Security Support for the Linux Kernel, in the Proceedings of

the 2002 USENIX Security Symposium, http://lsm.immunix.org.

[23] XML Schema, W3C Recommendation, May 2001, http://www.w3c.org/XML/

Schema

Index

Alarm event, 51

Benchmarking DSI, 75

Certificates, 13

ChangeProcSID, 64

Client Server Tests, 67

cluster, 1

CORBA, 13, 24

DAC, 35

DciInit, 63

Default ScID, 43

destination IP address, 54

digital signature, 61

Digital Signatures, 58

DisAC, 35

DisCI, 53

DisCI benchmarks, 76

DisCI conclusion, 59

DisCI functionality tests, 69

DisCI preemptiveness, 58

DisCI rule, 42

Distributed Access Control, 35

DSI installation, 11

DSI testing, 67

DSI SID NORMAL, 65

dsiUpdatePolicy, 63

DSM, 26, 37

DSM automatic scenario testing, 68

DSM filesystem testing, 67

DSM rule, 33

DSM Rule event, 50

DSM unit testing, 68

DSP, 25, 39

DSP Generator, 46

DSP update, 28, 46

freeswan, 58

Heart beat, 50

integration tests, 72

integrity, 61

IP options, 57

Kernel memory, 29

Kernel module, 73

Kernel patch, 11

kernel versioning, 18

LKM, 73

ls dsi, 64

LSM, 11

LTT, 74

MAC, 35

Makefile options, 18

module versioning, 18

NAT, 53

Network rule, 42

omniEvents-troubleshooting, 15

omniORB.cfg, 15

OpenSSL, 13

permissive, 43

policy file, 39

Policy rule matching, 30

printk, 73

PrintPolicy, 66

Process rule, 40

ps dsi, 65

Requirements, 2, 11

restrictive, 43

SCC, 49

Scenario, 21

secure communication channel, 8

security architecture, 5

security manager, 7

Security rules, 39

security server, 6

security service, 9

SetNodeID, 64

85

86 INDEX

SetSID, 64

socket alarms, 29

Socket init rule, 41

socket permissions, 29

Socket rule, 40

source IP address, 55

spinlock, 32

SS Console, 64

sys security, 32

TCP, 56

Transition rule, 43

UDP, 23

unresolved symbol, 18

UpdatePolicy, 63

user mode Linux, 58

Warning event, 51

Xerces, 15

XML advantages, 49

XML events, 49

XML information event, 51

XML namespace, 49

XML parsing, 52

XML Schema, 44

XML Update Policy, 50

