
Distributed Access Control for Carrier Class Clusters

M. Pouzandi, A. Apvrille, E. Gingras, A. Medenou, D. Gordon
Open Systems Lab, Ericsson Research Canada,

8400 D́ecarie Blvd, Town of Mount-Royal, (QC) Canada H4P 2N2.
{Makan.Pourzandi, Axelle.Apvrille}@Ericsson.ca

egingras@meg.qc.ca, medenou@ieee.org, gordd00@dmi.usherb.ca

Abstract

The telecommunication industry traditionally uses clus-
ters to meet its carrier-class requirements of high availabil-
ity and reliability. As security has also become a major
issue, a Distributed Security Infrastructure (DSI) has been
initiated for carrier-class Linux clusters. DSI is a security
framework which focuses on providing distributed security
services and simplifying security administration.

This paper presents one of those services: distributed
access control service (DisAC). This service manages ac-
cess rights throughout the whole cluster with process-level
granularity. Rules are configured through a unique secu-
rity policy, which is propagated to each node of the cluster.
DisAC enhances this policy at node level but also inter-node
access control with process-level granularity.

Keywords: Security, Carrier Class Clustered Servers,
Distributed Infrastructure, Linux Security Module (LSM).

1. Introduction

With the recent expansion and opening of telecommuni-
cation networks, carrier-class clusters’ characteristics have
evolved from high availability, reliability and performance
to include new features such as cluster-wide security.

Many security solutions exist, ranging from external so-
lutions (such as firewalls) to internal solutions (such as in-
tegrity checking software). But, unfortunately, all of them
are based on a single node approach. Hence, they lack a
homogeneous view of the cluster. Most of the time, admin-
istrators end up installing, patching, integrating and manag-
ing several security solutions. The increased management
difficulty soon leads to decreased security as interoperabil-
ity issues increase with the updates of heterogeneous basis
of software.

This research targets the carrier grade applications run-
ning soft real-time applications on clusters. The fact that the
source code of Linux kernel operating system is available is
a major advantage developing DSI on Linux based clusters.

Consequently, an open source project, namedDistributed
Security Infrastructure(DSI)[1], was initiated, so as to pro-
pose an adequate security solution for carrier-grade clus-
tered servers. DSI is a security framework which provides
applications running on clustered systems with distributed
mechanisms for access control, authentication, confidential-
ity and integrity of communications, and auditing services
with a process-level granularity. Detailed architecture of
DSI has already been presented in [8].

Distributed Access Control Service (DisAC) is a core
service of DSI. DisAC extends the kernel-levelMandatory
Access Control(MAC) features for a single computer into
features for a distributed environment.

DSI is based on open and standard software such as
Linux Security Modules (LSM) for kernel level security
mechanisms [10], CORBA [7] for inter-node communi-
cations, SSL/TLS and IPSec for communication security.
Therefore, DSI can be easily extended to be used for other
types of distributed environments, for instance Grid com-
puting.

The paper is organized as follows. In section 2, we
explain the goals behind developing DSI. After briefly re-
minding DSI’s architecture, section 3, we introduce in sec-
tion 4 the distributed security policy, a pre-requisite to func-
tionalities of all security services. In section 5, we present
the distributed access control service. Benchmark results
of our implementation are presented in section 6. Finally,
section 7 concludes with ongoing work and future plans for
DSI.

2. Goals

DSI basically focuses (1) on providing coherent dis-
tributed security services across different nodes with
process-level granularity and (2) on simplifying cluster’s se-
curity administration.

In DisAC, those requirements have been taken into ac-
count in the following way.



First, DisAC implements the MAC paradigm over the
entire cluster with process-level granularity. This is dis-
cussed more precisely in§5.2. This is particularly useful
for sharing large clusters between several functionality for
practical or economical reasons. In this case, there is a need
for compartmentalization of cluster into separated logical
sub-clusters with restricted/controlled connections between
them. For instance, this scenario is quite useful for carrier
grade clustered servers that are shared among different op-
erators: operators share the global infrastructure of the clus-
ter providing different services to their clients, but they do
not wish to share their binaries or data with other operators.

Second, in order to reduce the security management
complexity, DisAC uses a centralized configuration point:
the Distributed Security Policy (DSP). The security admin-
istrator sets up the security policy on the security server,
upon its validation the DSP is propagated through the whole
cluster. This security policy is then automatically enforced
at each node. Therefore, DSI eliminates the need for con-
figuring individually each node of the cluster eliminating a
major source of security breaches for servers: misconfigu-
ration (c.f.§4).

Furthermore, DisAC allows administrators to simplify
access control rules by setting different categories of secu-
rity contexts and grouping binaries (c.f.§5.3).

3. DSI architecture

DSI targets clusters and, in doing so, introduces original
contributions to their security. Some of its parts, however,
such as its Access Control Service and its use of security
contexts and identifiers, owe much to existing propositions,
such as Security Enhanced (SE) Linux [4, 9].

One of our main initial hypothesis is that we do not have
access to source code of the application, therefore DSI is a
system-level tool for administrators/integrators rather than
a development tool for developers. DSI enforces security
policy for applications based on their binary images inde-
pendently from security mechanisms implemented (or not)
at source code. This approach is particularly useful for in-
tegrating third-party software to trusted environments.

3.1 DSI main components

DSI is composed of one security server (SS) and mul-
tiple security managers (SMs) - one per node (see Figure
1). The SS is the central point of management of the clus-
ter: it gathers all alarms and warnings sent by the SMs and
propagates the security policy over the cluster. Each SM
is responsible to enforce security on its own node. Admin-
istrative messages between SMs and SS are sent on secure
encrypted and authenticated channels, using SSL/TLS over
CORBA (i.e.; Secure Communication Channel in figure 1).

Primary 

Security 

Server Node


Node 1
 Node 2
 Node 3


DSM


SS


DSM
 DSM


Proc123
 Proc978
 Proc222


K
er

ne
l


Secure Communication Channel


Secondary


Data Traffic
In
si

de
 th

e 
C

lu
st

er



Security 

and

O&M/IDS


O
ut

si
de

 th
e 

C
lu

st
er




SS
Security Server


SM
Security Manager


Authenticated

Encrypted 

Communications


SM
SM
SM


DSM
Distributed 

Security Module


 


Figure 1. Distributed Architecture of DSI

Initially, the administrator assigns each node asecurity
node identifierSnID. All processes also receive asecurity
context identifier(ScID). ScIDs are global over the clus-
ter and persistent (they do not change after rebooting the
host). Actually, one should think of SsIDs more like secu-
rity Group IDs (GIDs) than Process IDs (PIDs): ScIDs are
meant to group together processes that have the same secu-
rity context. So, contrary to PIDs, SsIDs do not uniquely
identify processes but security contexts.

Hence, the distributed security policy (DSP) simply con-
sists of a list of rules to be applied to a couple of (SnID,
ScID). Through the DSP, security rules can be set for each
(SnID,ScID) couple, thus enabling a fine-grained process-
level security policy, valid over the whole cluster.

For security mechanisms to be effective, users should not
be able to bypass them. Hence, the best place to enforce
security is at kernel level. Therefore, when necessary, all
security decisions are implemented at kernel level, in the
so-calledDSI Security Module(DSM). DSM is a set of ker-
nel functions enforcing distributed security policy, and is
implemented using LSM [10] as a Linux kernel module.

A more detailed presentation of DSI can be found in [8,
1].

3.2 A service based approach for DSI

DSI adopts a service based approach. The security func-
tionality at SM is concentrated into several logical units:
distributed security services (see Figure 2). DisAC en-
hances local and remote access control rules. The choice
of a service based architecture has been motivated by vari-
ous reasons:

• services can be implemented individually and sepa-



rately for the rest of the system, as long as they con-
form to an API.

• administrator may choose to enable or disable a given
security service according to specific security require-
ments or performance issues.

• services may be updated with newer versions that con-
form to the same API. In the telecommunication indus-
try, the update procedure is particularly interesting as
clusters should not be rebooted.

Figure 2. DSI services.

In DSI, all services are configured through a key ele-
ment: thedistributed security policy. The next section de-
tails the syntax for security policy and security service in-
teractions.

4. The Distributed Security Policy (DSP)

The goal of the DSP is to define a unique, homoge-
neous and cluster-wide security policy to be enforced over
all nodes of a cluster. It contains customization for all se-
curity services running on DSI (c.f.§3.2). As this paper
focuses on DisAC, this section will concentrate only on con-
figuration of access control rules in the DSP.

Basically, an access control rule consists in various per-
missions to be applied to entities (i.e.; processes, sock-
ets,. . . ) sharing the same security context and security node
identifier (i.e.; a ScID/SnID couple). Permissions are or-
ganized in differentclasses. For instance, there are per-
missions relative to sockets (create, bind, send, receive...),
others relative to process transitions etc. All kinds of per-
missions have not been implemented yet. Actually, we have
mainly focused on network communication and process cre-
ation so far, as we believed those were the most important
to our targeted environment1.

This means that, currently, the DSP is capable of :

1Most carrier-grade clustered servers have many disk-less hosts and
only few processors with disks.

• assigning permissions to a given ScID/SnID couple.
Wildcards may be used instead of ScID or SnID, to
specify that the permission should be applied to all en-
tities on a given node, or all entities of a given security
context.

• allowing or denying a given ScID/SnID permission to
spawn new processes. The DSP enables control over
fork() or execve() system calls (c.f.§5.3).

• controlling specifically permissions of sockets on the
cluster. ScIDs may be assigned to sockets of a given
node, using a given protocol and port2, or to processes
using such sockets. Then, it is possible to set permis-
sions between source and target sockets/processes. For
instance, the following DSP sample rule allows pro-
cesses with ScID=2 on node 1 to create and/or query
options of sockets with ScID=2 on node 2.

<SOCKET_class_rule>
<sSnID> 1 </sSnID>
<sScID> 2 </sScID>
<tSnID> 2 </tSnID>
<tScID> 2 </tScID>
<allow> CREATE

GET_OPTIONS </allow>
</SOCKET_class_rule>

• more generally, controlling network permissions on
the cluster, such as allowing or denying a given
ScID,SnID to receive network information from a
given target ScID, SnID.

In DSI, the DSP is implemented as an XML document.
XML has been chosen for multiple reasons. First, XML
documents are easy to read, and can consequently be eas-
ily edited by cluster administrators. Second, XML comes
with a wide variety of open source tools to parse, display or
even secure XML documents [2, 3]. For instance, DSI uses
the Xerces parser [12] to validate the DSP against an XML
Schema [13] : any syntax error in the DSP the administra-
tor writes is immediately spotted. Third, XML’s flexibility
is essential in our case, so as to be able to support modifi-
cation and addition of rule types that might occur through
development of DSI.

5. The DIstributed Security Access Control
service (DisAC)

5.1 Access control at OS kernel level

For security not to be bypassed, the DisAC service is en-
forced at OS kernel level (with the hypothesis that the ker-
nel is not compromised). The Linux Security Module [10]

2Currently only TCP and UDP are supported.



project provides a lightweight, general purpose framework
for access control by implementing a set of hooks at ker-
nel level. DSI’s kernel load module is namedDistributed
Security Module(DSM), and implements different security
hooks provided by LSM [8].

To each kernel entity structure (e.g., process, socket...)
an ScID is added, and on each node, the DSP is loaded as
a set of rules into the DSM. Then, DSM checks the access
request from a process against its privileges, which are de-
fined by its security context (ScID, c.f.§5.2) and makes a
decision to grant or not the permission.

5.2 Cluster-wide access control for DisAC

Local access is based on ScID of source process (SS-
cID) and target object (TScID) for example a TCP or UDP
socket. Therefore, DisAC provides the system with a
process-level granularity for access control decisions.

Furthermore, DisAC extends the local access control to a
distributedaccess control for the whole cluster, using both
source/target security node and security context identifiers
as security information. So, access may be defined by:

Access = Function(SSnID, SScID, TSnID,
TScID)

At implementation level, when a source tries to access
a local resource, the DSM checks locally using source and
target ScIDs.

Figure 3 illustrates the case where a remote resource is
being accessed. First, a local check is performed to verify
that local entity (here, process 12, ScID=4) has permission
to send information on local TCP socket (ScID=30, port
number is fixed by the operating system). This is rule num-
ber 1 (see table 1). If permission is granted, an IP packet
is sent to the remote node, containing SScID and SSnID of
the source entity (here process 12, ScID=4) in its IP Options
based on FIPS definition of standard security labels for in-
formation transfer [6]. When the IP packet is received on
the remote node, the DSM module retrieves the IP Options
and uses SScID and SSnID to check that source entity (here
process 12, ScID=4) has permission to send information to
the defined target entity (here TCP port 8000, ScID=31).
This is rule number 2. Furthermore, a check is performed
to verify that source entity has the permission to send in-
formation to the parent process (here process 14, ScID=5)
which created the socket (rule 3). Finally, of course, DSM
verifies that the process 14 has permission to receive infor-
mation from TCP socket port 8000 (rule 4).

One has to remark that all these are presented at DSM
through the permissions associated with different security
contexts (SScID,...) of the entities involved (process 12,
process 14, and TCP port 8000) on different nodes of the
cluster.

Rule SScID SSnID TScID TSnID Perm.
1 4 1 30 1 Send
2 4 1 31 2 Send
3 4 1 5 2 Send
4 5 2 30 2 Receive

Table 1. Rules checked for secure remote access con-
trol.

If there does not exist an exact match between these IDs
and the existing DSP loaded in the DSM, a default behavior
is used. This default behavior is defined in the DSP defini-
tion: permissive (accept the IP packet) or restrictive (drop
the IP Packet).

Figure 3. Secure remote access control.

5.3 Categorizing binaries for an easier manage-
ment

In DSI, ScID are stored in ELF header of the binaries.
To avoid tampering with binaries by intruders to modify the
ScID, DSI plans to support digital signatures for binaries.

All processes running in DSI have an ScID, and the DSP
rules explicitly under which ScID a new process may be
created. This is essential for instance to detect replicating
viruses. Figure 4 illustrates this procedure.

There are two different ways to create a new process:
fork the process, or spawn a new process:

• If a process is forked3, then the DisAC service checks
with the DSP whether the process has such authoriza-
tion or not. If authorization is granted, the forked pro-

3This means that the parent’s binary is also used for this new process.



Figure 4. Process transition: the shell/bin/sh
tries to spawn/bin/emacs . The ScID 43 has been
stored in the ELF header of the emacs binary.

cess inherits everything from its father including its
ScID. If the father hasn’t any ScID, then the process
is assigned a default (generally restrictive) ScID.

• If a new process is to be spawned (i.e.;execve() ),
then the DisAC service checks whether a binary of a
given ScID, launched by a parent with a given parent
ScID, is allowed totransit to a givennewScID. If such
a transition is granted, the new process is launched un-
der the new ScID. If either the parent, or the binary do
not have a specific ScID, then a default ScID is used.

In §3.1, we have reminded thatsecurity contextidenti-
fiers identify a givensecurity context. Hence, if the same se-
curity context applies for different binaries, they may share
the same ScIDs. This enablescompartmentalizingof bina-
ries simplifying security administration of the cluster.

Grouping the binaries according to their security con-
text, the administrator will assign the same ScID to all bi-
naries belonging to the same group. Simplifying the burden
of managing security contexts for each binary to managing
those contexts for several groups.

Therefore according to security needs, an administrator
could choose to classify his processes from the simplest to
the most complex. For example, he/she can choose to divide
binaries into only two groups: trusted vs. untrusted or use
very fine grained control selecting a distinct security context
for each binary.

6. Benchmark results

We ran LMBench 3.0 [5] on a Linux 2.4.17 kernel run-
ning on a Intel Pentium IV 2.4 GHz to test the impact of

DSI security mechanisms on the system. Tests have been
performed ten times on two different configurations:

• Base: a “basic” 2.4.17 kernel with the LSM [10] patch,
without any security check performed. This configura-
tion is used as reference for comparisons,

• DSM: the same patched kernel, with the DSM module
loaded, implementing different security mechanisms
defined above.

Average total overhead due to DSM has then been calcu-
lated (see Table 2).

A detailed explanation of tests can be found at [5]. The
stat test measures the time to invoke thestat system
call on a temporary file. The open/close test measures how
long it takes to open a file for reading and immediately close
it.

Concerning the fork, exec and sh proc tests, they respec-
tively measure how long it takes to fork a new process,
launch a new process usingexecve , and execute a shell
that spawns a new process.

In some cases (stat, sh proc), DSM improves the base.
Of course, this is impossible, and we believe it only means
that overhead is not significant and that benchmarks should
be run on more than 10 samples.

Test type Base DSM Overhead
Stat 1.92 1.94 1.0%
Open / Close 2.68 2.68 0%
Fork 92.81 93.58 0.82%
Exec 322.56 328.33 1.78%
Sh proc 2140.75 2150 0.43%
UDP 9.68 10.61 9.6%
RPC/UDP 17.66 18.7 5.9%
TCP 11.08 12.68 14.4%
RPC/TCP 23.42 24.3 3.75%

Table 2. Comparison of performances between a
LSM patched kernel without any security mechanisms
implemented and a kernel supporting DSI distributed
security services. Time units are microseconds.

UDP and TCP latency tests are performed by having
client and server loop on exchanging a message of 4 bytes.
The RPC tests are similar, but using Sun’s RPC layer over
TCP or UDP.

For TCP and UDP tests, DSM’s overhead ranges from
9 to 15% as security checks have to be done before pro-
cesses are allowed to communicate and at the reception of
each IP packet. We are currently working to reduce this
overhead, and preliminary efforts show so far that if DSI



security mechanisms are implemented at driver level, the
overhead can be reduced till less than 4%.

For RPC tests, as the overhead due to RPC connections
increases in the total time of communication, the overhead
due to security checks decreases in percentage.

Furthermore, we performed performances with NetIO
testing tool [11]. This tool measures the performances for
already established TCP connections. Results presented in
table 3 shows clearly that the overhead of DisAC for already
established connections varies between the worst case 3%
for short messages to an average of 1%.

Message size Base DSM Overhead
1 KBytes 11497 11132 3%
2 K Bytes 11440 11281 1%
4 K Bytes 11330 11328 0%
8 K Bytes 11494 11290 2%
16 K Bytes 11438 11275 1%
32 K Bytes 11449 11331 1%

Table 3. Comparison of performances between a
LSM patched kernel without any security mecha-
nisms implemented and a kernel supporting DSI dis-
tributed security services. Bandwidth between 2
machiens is presented according to the message size
in KBytes/sec.

Those results are quite encouraging. Moreover, one
should note that all communication related tests have been
performed locally on a single node; whereas DSI targets
communications over a network where the overhead due
to the network latency will reduce DSI’s impact on perfor-
mances. Work is currently under progress to optimize DSI
code and measure DSI’s performance in a real clustered en-
vironment.

7. Conclusion

Existing security solutions being all single-node based,
they lack a homogeneous view of distributed environments
such as carrier-class clusters. DSI aims at solving this lack
by proposing a security framework dedicated to such sys-
tems. Our goal is to extend the Mandatory access control
features for a single node to features for a distributed sys-
tem.

In this paper, we have presented the Distributed Access
Control service (DisAC), one of core services of DSI. We
showed how DisAC implements inter-node access control
mechanisms for a cluster making possible a compartmen-
talization of the cluster into sub-clusters.

Furthermore, to avoid the numerous vulnerabilities due
to misconfiguration, DSI has focused on simplifying ad-

ministrator’s tasks. Two methods are detailed in this pa-
per: first, the automatic enforcement of security rules at
all nodes of the cluster upon the validation/modification of
Distributed Security Policy configuration file, and second,
reducing size of the security policy by assigning security
contexts to groups of binaries instead of individual applica-
tions.

Benchmark results of a first prototype show the feasibil-
ity of our approach. They show minimal impact on local op-
erations. DSI security mechanisms induce some overhead
for communications as there is a price to pay for extending
the fine grained security controls to the whole cluster.

We believe that our approach is general enough to be
used on other kinds of distributed systems when there is a
need for monitoring the access control permissions in a dis-
tributed system (e.g.; cluster, processors part of a grid,. . . )
divided into different distributed virtual sub-systems run-
ning different applications.

We plan to focus on completing implementation of re-
maining LSM hooks and of course, optimizing code.

References

[1] The Distributed Security Infrastructure Project,
http://sourceforge.net/projects/
disec .

[2] Eastlake D., Reagle J., Solo D.,XML-Signature Syntax
& Processing, Network Working Group, RFC 3275,
March 2002.

[3] Imamura T., Dillaway B., Simon E.,XML Encryption
Syntax & Processing, W3C Recommendation, De-
cember 2002.

[4] Loscocco P., Smalley S.Integrating Flexible Sup-
port for Security Policies in the Linux Operating Sys-
tem, in the Proceedings of the FREENIX track of the
2001 USENIX Annual Technical Conference, 2001,
http://www.nsa.gov/selinux .

[5] Mc Voy L., Staelin C.LmBench: portable tools for
performance analysis, in Proceedings of the 1996
USENIX Annual Technical Conference,http://
www.bitmover.com/lmbench .

[6] NIST, Standard Security Label for Information Trans-
fer, FIPS 188, Computer Security category, Security
Labels subcategory,http://csrc.nist.gov/
publications/fips/fips188.html

[7] omniORB, http://omniorb.sourceforge.
net .



[8] Pourzandi M., Haddad I., Levert C., Zakrzewski M.,
Dagenais M.,A Distributed Security Infrastructure for
Carrier Class Linux, in Proceedings of the Fourth An-
nual Ottawa Linux Symposium , 2002.

[9] Spencer R., Smalley S., Loscocco P., Hibler M., An-
dersen D., Lepreau J.,The Flask Security Architec-
ture: System Support for Diverse Security Policies, in
the Proceedings of the 1999 USENIX Security Sym-
posium.

[10] Wright C., Cowan C., Smalley S., Morris J., Kroah-
Hartmann G.,Linux Security Modules: General Secu-
rity Support for the Linux Kernel, in the Proceedings
of the 2002 USENIX Security Symposium,http:
//lsm.immunix.org .

[11] Netio, Ed Avis, http://ftp.leo.org/pub/
comp/os/os2/leo/systools/netio116.
zip

[12] The Xerces C++ Parserhttp://xml.apache.
org/xerces-c .

[13] XML Schema, W3C Recommendation, May 2001,
http://www.w3.org/XML/Schema .


