
The DigSig project

The DigSig team

July 15, 2005

Abstract

This working documentation presents the DigSig project, a Linux kernel module
capable of verifying digital signatures of ELF binaries before running them. This
kernel module is available under the GPL license at http://sourceforge.net/projects/disec/,
and has been successfully tested for kernels 2.6.8 and above.

1 Introduction

1.1 Why Check the Signature of Your Binaries Before
Running Them ?

The problem with blindly running executables is that you are never sure they
actually do what you think they are supposed to do (and nothing more...): if
viruses spread so much on Microsoft Windows systems, it is mainly because
users are frantic to execute whatever they receive, especially if the title is ap-
pealing... The LoveLetter virus, with over 2.5 million machines infected, is a
famous illustration of this. Yet, Linux is unfortunately not immune to malicious
code either [1]. By executing unknown and untrusted code, users are exposed
to a wide range of Unix worms, viruses, trojans, backdoors etc. To prevent this,
a possible solution is to digitally sign binaries you trust, and have the system
check their digital signature before running them: if the signature cannot be
verified, the binary is declared corrupt and operating system will not let it run.

1.2 Related Work

There has already been several initiatives in this domain (see Table 1), but we
believe the DigSig project is the first to be both easily accessible to all (available
on Sourceforge under the GPL license) and to operate at kernel level.

The advantages we see in the DigSig solution are:

• there are no signature database to maintain. When you want to add a new
binary to your system, you only need to sign it. There is no additional
command to synchronize a database or a status.

1

Real-time
signature
verifica-
tion

File type Level Availability

Tripwire No All User Commercial &
GPL

Cryptomark Yes Binaries Kernel Abandonned ?
Signed Exe-
cutables

Yes Binaries
& scripts

Kernel Not GPL

Umbrella’s
[?] DSB
(Digitally
Signed
Binaries)

Yes Binaries Kernel Uses DigSig - GPL

DigSig Yes Binaries
and
libraries

Kernel GPL

Table 1: Comparison between file signing tools.

• signature verification is automatically enforced. Users do not need to type
a special command to verify the binary’s signature.

• the kernel does not need to be patched. DigSig is implemented as a kernel
module.

• the impact on your system’s performance are very light.

• and, of course, it is available for free under the GPL license.

1.3 The DigSig Solution - in brief

In order to avoid re-inventing the wheel, we based our solution on the existing
open source project BSign: a Debian userspace binary signing package. BSign
signs the binaries and embeds the signature in the binary itself. Then, at kernel
level, DigSig verifies these signatures at execution time and denies execution if
signature is invalid.

Typically, in our approach, binaries are not signed by vendors, but we rather
hand over control of the system to the local administrator. He/she is responsible
to sign all binaries he/she trusts with his/her private key. Then, those binaries
are verified with the corresponding public key. This means you can still use your
favorite (signed) binaries: no change in habits. Basically, DigSig only guarantees
two things: (1) if you signed a binary, nobody else than you can modify that
binary without being detected, and (2) nobody can run a binary which is not
signed or badly signed. Of course, you should be careful not to sign untrusted
code: if malicious code is signed, all security benefits are lost.

2 Quick start - How do I use DigSig ?

DigSig is fairly simple to use. We have listed the different steps you should
go through. Note all these steps only need to be done once, except loading
the DigSig kernel module (which should be done after each system reboot) and
signing the binaries (which should be done each time you add/modify a trusted
binary).

• Check the requirements (see 2.1)

• Generate a key pair with GnuPG [6] (see 2.2)

• Sign all binaries and libraries you trust (see 2.3)

• Compile the DigSig kernel module (see 2.4)

• Load DigSig (see 2.5)

• Check it works (see 2.6)

2.1 Requirements

• BSign, version 0.4.5 or more [3]

• GnuPG, version 1.2.2 or more [6]

• a 2.6.8 kernel (or more), with CONFIG SECURITY and CONFIG SHA1
enabled

• gcc, make etc.

NB. You do NOT need DSI. DigSig is an independant project. It uses DSI’s
CVS for historical reasons.

2.2 Generate a key pair

If you haven’t got an RSA key pair yet, generate one with GnuPG:

$ gpg --gen-key

You may use RSA key pairs up to 2048 bits (included). Keep your private
key somewhere same. Then extract your public key:

$ gpg --export >> my_public_key.pub

2.3 Sign trusted binaries/libraries

In the following we show step by step how to sign the executable ”ps”:

$ cp ‘which ps‘ ps-test

$ bsign -s ps-test // Sign the binary

$ bsign -V ps-test // Verify the validity of the signature

The following command signs an entire Linux distribution, except some sys-
tem directories:

bsign -s -v -l -i / -e /proc -e /dev -e /boot -e /usr/X11R6/lib/modules

2.4 Compile the DigSig kernel module

Then, you need to install the DigSig kernel module. To do so, a recent ker-
nel version is required (2.6.8 or more)1, compiled with security options en-
abled (CONFIG SECURITY=y) and SHA-1 (CONFIG SHA1=y). To compile
DigSig, assuming your kernel source directory is /usr/src/linux-2.5.66, you do:

$ cd digsig

$ make -C /usr/src/linux-2.5.66 SUBDIRS=$PWD modules

$ cd digsig/tools && make

Actually, this is the hard way to do it. The easy way is to use our digsig.init
script:

$ cd digsig

$./digsig.init compile

This builds the DigSig kernel module (digsig verif.ko), and you are probably
already half-way through the command to load it, but wait ! If you are not
cautious about the following point, you might secure your machine so
hard you’ll basically freeze it. As a matter of fact, once DigSig is loaded,
verification of binary signatures is activated. At that time, binaries will be able
to run only if their signature is successfully verified. In all other cases (invalid
signature, corrupted file, no signature...), execution of the binary will be denied.
Consequently, if you forget to sign an essential binary such as /sbin/reboot, or
/sbin/rmmod, you’ll be most embarrassed to reboot the system if you have to...
Therefore, for testing purposes, we recommend you initially run DigSig in debug
mode. To do this, make sure to compile DigSig with the DIGSIG DEBUG flag
set in the Makefile (in theory, this is done by default, but still, check it !):

EXTRA_CFLAGS += -DDIGSIG_DEBUG -I $(obj)

In debug mode, DigSig lets unsigned binaries run. This state is ideal to test
DigSig, and also list the binaries you need to sign to get a fully operational
system.

1Previous versions of DigSig were known to work with 2.5.66 kernels.

2.5 Load the DigSig kernel module

Once this precaution has been taken, it is now time to load the DigSig module,
with your public key as argument. Log as root, and use the digsig.init script to
load the module.

./digsig.init start my_public_key.pub

Testing if sysfs is mounted in /sys.

sysfs found

Loading Digsig module.

Loading public key.

Done.

This is it: signature verification are activated.

2.6 Check it works

You can check the signed ps executable (ps-test) works:

$./ps-test

$ su

Password:

tail -f /var/log/messages

colby kernel: DIGSIG MODULE - binary is ./ps-test

colby kernel: DIGSIG MODULE - dsi_bprm_compute_creds:

Found signature section

colby kernel: DIGSIG MODULE - dsi_bprm_compute_creds:

Signature verification successful

But, corrupted executables won’t run:

$./ps-corrupt

bash: ./ps-corrupt: Operation not permitted

colby kernel: DIGSIG MODULE - binary is ./ps-corrupt

colby kernel: DIGSIG MODULE Error - dsi_bprm_compute_creds:

Signatures do not match for ./ps-corrupt

If the permissive debug mode is set, signature verification is skipped for
unsigned binaries. Otherwise, the control is strictly enforced in the normal
behavior:

$./ps

bash: ./ps: cannot execute binary file

su

Password:

tail -f /var/log/messages

colby kernel: DIGSIG MODULE - binary is ./ps

colby kernel: DIGSIG MODULE - dsi_bprm_compute_creds:

Signatures do not match

3 DigSig, behind the scene

3.1 DigSig LSM hooks

The core of DigSig lies in the LSM hooks placed in the kernel’s routines for
executing a binary. The starting point of any binary execution is a system call
to sys exec() which triggers do execve(). This is the transition between user
space and kernel space.

The first LSM hook to be called is bprm alloc security, where a security
structure is optionally attached to the linux bprm structure which represents the
task. DigSig does not use this hook as it doesn’t need any specific security struc-
ture. Then, the kernel tries to find a binary handler (search binary handler) to
load the file. This is when the LSM hook bprm check security is called. In
former versions of DigSig, this is precisely where DigSig performed its signature
verification. However, this has been moved to a later hook (see below) be-
cause we have added support for signed libraries and those wouldn’t trigger the
bprm check security hook. If successful, load elf binary() gets called. Then, the
kernel function do mmap() is called, which triggers file mmap(). This is where
DigSig actually verifies signature of our binary or library.

Finally, the bprm free security() hook is called - which frees any eventual
security structure (reminder: we don’t have any in DigSig). Note other LSM
hooks may be called, such as inode permission, inode unlink.

So, this is how DigSig enforces binary signature verification at kernel level.
Note signature verification is not triggered only after an execv* but each time
the ELF file is mmap’ed (hook do mmap).

digsig inode permission check it is okay to write in a given inode.
If the executable/library is running, forbid
write. Remove from signature cache.

digsig inode unlink remove signature from cache.
digsig file free security called when file is closed. Release write lock.
digsig file mmap Forbid write access to file. Check signature is

in the cache. If not, verify signature.

Table 2: LSM Hooks used in DigSig.

3.2 Digital Signature of Shared Libraries

By using the file mmap hook, DigSig can verify shared libraries. Each time
a program asks for a library, the kernel maps into memory some part of the
library’s file. It does this by calling do mmap. The LSM hook file mmap allow
DigSig to intercept the shared library before it is executed and to verify its
signature. DigSig can then allow or deny the execution of the shared library. Of
course, if DigSig denies execution, the program asking for the library will crash
with a segmentation fault error.

Figure 1: Control flow in binary execution.

3.3 Signing an ELF

Now, let’s shortly explain the signing mechanism of DigSig’s userland coun-
terpart: BSign. When signing an ELF binary (or library), BSign stores the
signature in a new section of the binary. To do so, it adds a new entry in the
section header table to account for this new section, with the name ’signature’
and a user defined type 0x80736967 (which comes from the ASCII characters ’s’,
’i’ and ’g’). You can check your binary’s section header table with the command
readelf -S binary.

$ readelf -S ./signed-binary

There are 34 section headers, starting at offset 0x1e62:

Section Headers:

[Nr] Name Type Addr Off Size ES Flg Lk Inf Al

[0] NULL 00000000 000000 000000 00 0 0 0

[1] .interp PROGBITS 08048114 000114 000013 00 A 0 0 1

[2] .note.ABI-tag NOTE 08048128 000128 000020 00 A 0 0 4

[3] .hash HASH 08048148 000148 00002c 04 A 4 0 4

[4] .dynsym DYNSYM 08048174 000174 000060 10 A 5 1 4

...

[28] .debug_line PROGBITS 00000000 0013c3 0002a1 00 0 0 1

[29] .debug_str PROGBITS 00000000 001664 0006d4 01 MS 0 0 1

[30] .shstrtab STRTAB 00000000 001d38 000132 00 0 0 1

[31] .symtab SYMTAB 00000000 0023b2 0006b0 10 32 52 4

[32] .strtab STRTAB 00000000 002a62 00045c 00 0 0 1

[33] signature LOUSER+736967 00000000 002ebe 000200 00 0 0 1

Key to Flags:

W (write), A (alloc), X (execute), M (merge), S (strings)

I (info), L (link order), G (group), x (unknown)

O (extra OS processing required) o (OS specific), p (processor specific)

Then, it goes through the following steps:

• zeroize the signature section

• perform a SHA-1 hash of the entire file2

• prefix this hash with ”#1; bsign v%s” where %s is the version number of
BSign,

• store the result at the begining of the binary’s signature section.

• call GnuPG to sign the signature section. Currently, GnuPG actually
builds an OpenPGP Signature Packet v3 for binary documents. Note the
signature is actually performed over #1; bsign v0.4.5, the file’s hash, a
4 octet timestamp and a signature class identifier (1 byte)3 The last two
elements are added by GnuPG and comply with the OpenPGP message
format.

• store the signature at the current position of the signature section.

3.4 Crypto issues

On a cryptographic point of view, DigSig needs to verify BSign’s signatures,
i.e RSA signatures. More precisely, this consists in, on one side, hashing the
binary with a one-way function (SHA-1) and padding the result (EMSA PKCS1
v1.5), and, on the other side, ”decrypting” the signature with the public key
and verifying this corresponds to the padded text.

PKCS#1 padding is pretty simple to implement, so we had no problems
coding it. Concerning SHA-1 hashing, we used Linux’s kernel CryptoAPI:

• we allocate a crypto tfm structure (crypto alloc tfm), and use it to ini-
tialize the hashing process (crypto digest init)

• then, we read the binary block by block, and feed it to the hashing routine
(crypto digest update)

2To be verified: the entire file is hashed except the signature section itself.
3Actually, this is bad design. The signature should be performed over the entire OpenPGP

Signature Packet, including the zeroized part for the signature. Part of this bug has been
solved in OpenPGP Signature Packets v4. The other part should be fixed in a newer version
of Bsign. There are no harmful exploits known so far, but nonetheless, this is bad.

Figure 2: A Bsign signature section in an ELF binary.

• finally, we retrieve the hash (crypto digest final).

The trickiest part is most certainly the RSA verification because the Cryp-
toAPI does not support asymetric algorithms (such as RSA) yet, so we had
to implement it... The theory behind RSA is relatively simple: it consists in a
modular exponentation (memodn) using very large primes, however, in practice,
everybody will agree that implementing an efficient big number library is tough
work.

So, instead of writing ours, we decided it would be safer ;-) to use an existing
one and adapt it to kernel restrictions.

We decided to port GnuPG’s math library (which is actually derived from
GMP, GNU’s math library) [6]4:

• only the RSA signature verification routines have been kept. For instance,
functions to generate large primes have been erased.

• allocations on the stack have been limited to the strict minimum.
4Earlier versions of DigSig could alternatively be hooked onto LibTomCrypt [7]. Currently,

this is no longer maintained, but we have kept the architecture in case we change our mind
and want to re-use LTM.

Figure 3: DigSig’s caching mechanism.

3.5 Caching

Digsig impacts performance only at the beginning of file execution. For long-
lived applications which are executed once, such as mozilla, the amortized cost
is likely acceptable. However, the cost of repeatedly checking signatures on
the same executables (such as ls) and libraries (such as libc) can become
significant depending upon the workload.

To combat this, digsig keeps a cache of validated signature checks When a
file’s signature has been validated, its inode is added into a hash table. The
next time the file is loaded, its presence in this hash table will serve as signature
validation without requiring recomputation of the signature.

Caching signature validations can be risky. We must ensure that an attacker
cannot use this feature to cause an altered version of a file to be loaded without
the (now invalid) signature being checked. In the simplest, case, a new file is
copied in place of the validated file. Since Digsig caches decisions based on the
inode, and the new file will have a different inode than the old file, the signature
will be computed and checked for the new file. If, instead, a process attempts
to write to an existing file whose signature validation has been cached, then the
signature validation will be cleared. The next time a process executes this file,
the signature will be recomputed. Finally, if a process is still executing a file
while another process attempts to write to it, the Linux kernel will deny the
request for write access.

There is still a risk, however, of the file being overwritten at a lower layer

than the VFS. In particular, this could happen with files mounted over NFS: an
NFS mounted file being executed on one client could, for instance, be modified
on the server or on any other client. To reduce this threat, DigSig does not
cache signature verifications for NFS mounted files.

NB. The signature cache size may be configured at load time using the
digsig max cached sigs option:

insmod -f digsig_verif.ko digsig_max_cached_sigs=1024

3.6 Signature revocation

DigSig also implements a signature revocation list, initialized at startup and
checked before each signature verification.

At first, signature revocation might seem strange: certificate revocation lists
(CRLs) are common, but not signature revocation lists. The idea at stake here
is to ease system administrator’s task. Suppose the administrator has signed
several binaries, but later, a vulnerability is found in one of them. Instead of
having the administrator re-sign all his binaries with a new key (what a burden
!), we merely ask him to add the signature of the vulnerable executable in the
signature revocation list. Of course, the day this list becomes too long, it is
time for the administrator to change his key, but that will only happen once in
a while, whereas vulnerabilities are (unfortunately) found quite often.

The revocation list is communicated to DigSig using the sysfs filesystem, by
writing to the /sys/digsig/digsig revoke file. We only read the revocation
list at kernel module startup (so that an attacker cannot modify it once DigSig
is in action). TO BE VERIFIED.

To extract the signature from a signed binary, use the extract sig tool:

./tools/extract_sig.sh signed-bin sig

It is important to note the signature revocations open the possibility of denial
of service. It is vital that an attacker not be able to add valid signatures to the
revocation list. To ensure this, DigSig restricts access to the communication
interface (/sys/digsig/digsig revoke) to root, so that only root can provide
revocation lists to DigSig.

As further precautions, we plan to guard integrity of the signature revocation
lists, for instance by signing it with GPG.

3.7 Package description

The DigSig package contains the following directories:

• Makefile: the main Makefile to compile the DigSig kernel module

• README: latest information you should read before installing and run-
ning.

• TODO: things we ought to do the day we have some time. Contributions
are welcome.

• docs: this directory. Contains the LaTeX documentation.

• gnupg: contains the port of GnuPG’s crypto library.

• ltm : contains the port of LibTom’s crypto library.

• tools: contains user land tools to extract the public key from your key
ring, or extract a signature from a signed binary.

The core implementation of DigSig consists a few files, included directly at
the root of the project:

• digsig.c: main for the kernel module. Contains the implementation of all
required LSM hooks.

• digsig cache.c: handles the caching mechanism (see section 3.5).

• digsig revocation.c: handles the revocation list (see section 3.6).

• dsi dev.c: handles communication with character device. No longer used.

• dsi extract mpi.c: extracts the Multi Precision Integer from the binary’s
signature. Only used with GnuPG’s crypto library.

• dsi ltm rsa.c: performs RSA computation using LibTom [7].

• dsi pkcs1.c: implements EMSA PKCS 1.5

• dsi sig verify.c: implements signature verification using GnuPG’s crypto
lib.

• dsi sig verify ltm.c: same but with LibTom.

• dsi sysfs.c: handles communication with sysfs.

3.8 Compilation flags

Compilation flags in DigSig are shown at table 3.

3.9 Features

Currently (v1.4.1), DigSig supports:

• Linux kernels 2.6.8 and above, but requirements should soon move to
2.6.12.

• RSA signatures with keys up to 2048 bits (included)

• SHA-1 hashing (no MD5 or else)

• plugging above GnuPG’s and LibTom’s crypto library5

5However, support for LibTom’s library hasn’t been maintained for a while and is currently
broken. But we hope to fix it soon ;-)

Name Description Default
DIGSIG DEBUG If enabled, unsigned binaries are al-

lowed to run
Yes

DIGSIG LOG Activate more intensive logging. Log
levels may be configured in digsig.c
(DigsigDebugLevel). Available levels
are listed in dsi debug.h

Yes

DIGSIG LTM Enable use of the LibTom library [7]
rather than GnuPG’s.

No

DIGSIG REVOCATION Enable revocation list Yes

Table 3: DigSig compilation flags

• support for 32-bit and 64-bit binaries

• signature verification for ELF binaries and libraries. We’re currently work-
ing on supporting scripts, but that’s not completely ready yet.

• signature caching mechanism

• signature revocation list

4 DigSig Performance

All performance measures used a RSA-1024 bit key, and SHA-1.

4.1 Overhead at execution

We benchmarked how long it takes to build three kernels on a non-DigSig sys-
tem and the same three kernel on a DigSig system. Tests were performed using
a Linux 2.6.7 kernel on a Pentium 4 2.4GHz with 512 MB of RAM. The ker-
nel being compiled was a 2.6.4 kernel, and the same .config was used for each
compile. Each compile was preceded by a “make clean”. Results are shown at
Figure 4. The first execution time, both with and without DigSig, appears to
reflect extra time needed to load the kernel source data files from disk.

4.2 The efficiency of the caching mechanism

To demonstrate the efficiency of the caching system, we benchmarked the du-
ration of a typical ls -Al command. We run the tests a 100 times and display
the average execution time, in seconds. The benchmark was run on a Linux
2.6.6 kernel with a Pentium IV 2.2 Ghz, 512 MB of RAM. See Figure 7.

As signature validation occurs in execve, DigSig’s overhead is expected to
show up during system time (sys). The benchmark results clearly highlight the
improvement: there is now hardly any impact when DigSig is used.

Kernel without DigSig
real sys
19m21.890s 1m27.992s
19m9.276s 1m26.584s
19m9.464s 1m26.191s
19m7.717s 1m25.799s

Kernel with DigSig
real sys
19m19.957s 1m28.541s
19m7.485s 1m26.832s
19m7.883s 1m26.549s
19m6.494s 1m26.618s

Figure 4: Time required for 2.6.4 kernel “make”

Kernel without DigSig
real 0m0.004s
user 0m0.000s
sys 0m0.001s
DigSig without caching
real 0m0.041s
user 0m0.000s
sys 0m0.038s
DigSig with caching
real 0m0.004s
user 0m0.000s
sys 0m0.002s

Figure 5: Time required for “/bin/ls -Al”

Kernel without Digsig
real 0m59.937s 0m59.175s 0m58.493s
user 0m42.058s 0m42154s 0m42.225s
sys 0m4.005s 0m3.939s 0m3.895s

Digsig without caching
real 1m0.405s 0m59.361s 0m59.329s
user 0m42.269s 0m42.226s 0m42.190s
sys 0m3.981s 0m3.927s 0m4.005s

Digsig with caching
real 0m59.660s 0m59.827s 0m59.724s
user 0m42.178s 0m42195s 0m42.120s
sys 0m4.008s 0m3.921s 0m3.940s

Figure 6: Time required for “tar jxvfp linux-2.6.0-test8.tar.bz2”

Actually, caching effects will be most dramatic while doing many quick re-
peated executions. An example of such a workload is compilation of large pack-
ages, which repeat the same sequence of actions on many different files. To
measure a best case performance improvement of caching, we timed compila-
tion of Digsig itself in three ways: without DigSig, with DigSig but caching
disabled, with DigSig and caching. For each of these three systems, we mea-
sured the amount of time required to

• untar the kernel source (see Figure 6),

• perform a directory listing on the top level of the kernel source (see Figure
7),

• compile the actual kernel (with the same configuration each time - see
Figure 8).

The benchmark was run on a Pentium IV 2.2 Ghz machine.
The least impact was seen in the tar operation. This is because we per-

formed many file creations, which also appear under system time. In contrast,
tar was a single execution, requiring only one signature validation. Therefore
the file operations effectively masked the signature validation check. The im-
pact of the signature check is more dramatic in the other two tests, where Digsig
without caching is eight to fourteen times slower than Digsig with caching, or
a kernel without Digsig. The latter two performed effectively the same, with
Digsig with caching sometimes outperforming a Digsig-free kernel.

Finally, compilation of a full kernel required 592 seconds without Digsig,
588 seconds with caching, and 1029 with digsig but without caching. Caching of
signature validations manages very effectively eliminate the performance impact
of Digsig under what would ordinarily be its worst workloads.

Kernel without Digsig
real 0m0.065s 0m0.007s 0m0.006s
user 0m0.001s 0m0.002s 0m0.002s
sys 0m0.005s 0m0.003s 0m0.003s

Digsig without caching
real 0m0.049s 0m0.053s 0m0.048s
user 0m0.003s 0m0.001s 0m0.003s
sys 0m0.044s 0m0.042s 0m0.043s

Digsig with caching
real 0m0.025s 0m0.006s 0m0.006s
user 0m0.001s 0m0.000s 0m0.003s
sys 0m0.005s 0m0.003s 0m0.004s

Figure 7: Time required for “/bin/ls -Al”

Kernel without Digsig
real 0m22.836s 0m15.716s 0m15.700s
user 0m14.291s 0m14.207s 0m14.242s
sys 0m1.449s 0m1.461s 0m1.427s

Digsig without caching
real 0m42.597s 0m32.629s 0m32.412s
user 0m14.577s 0m14.513s 0m14.501s
sys 0m16.073s 0m16.112s 0m16.158s

Digsig with caching
real 0m22.996s 0m15.636s 0m15.612s
user 0m14.167s 0m14.179s 0m14.108s
sys 0m1.543s 0m1.408s 0m1.477s

Figure 8: Time required for kernel compilation

4.3 DigSig performance and executable size

The idea in this benchmark is so understand the impact of signed executables’
size on DigSig’s overhead.

We benchmarked the overhead of DigSig for an executable of 68230 bytes
and found a 1.6 ms overhead. Then, we benchmarked the overhead for a big
executable of 4093614 bytes, and found a 67ms overhead. On a chart with ms on
the x axis and bytes on the y axis, we have two points: SmallExec(1.6, 68230)
and BigExec(67,4093614). The line that joins both points is a.x + b = y, with
a = 61550 and b = −30250

Then, we approximately verify that a medium sized executable falls on this
line: we chose an executable of 672532 bytes and found 11.5ms, which is close
to x = (y − b)/a = (672532 + 30250)/61550 = 11.42

Of course, we should take more measures, especially on very big executables,
but it looks like the overhead induced by DigSig grows linearly with the size of
executables, at a very small gradient : 0.0016 microsecond per byte. Again, this
is very approximate, and more measures should be done.

Actually, other benchmarks have been done, but with older versions of DigSig
(without any caching for instance). Their results corroborate with this idea of
DigSig’s overhead growing with executable size, but timings cannot be com-
pared with recent ones because machines, kernel versions, DigSig versions have
changed too much. Just for your knowledge, we timed 20 executions of ls, gcc
compilation and tar:

% time /bin/ls -Al # times /bin/ls

% time ./digsig.init compile # times compilation with gcc

% time tar jxvfp linux-2.6.0-test8.tar.bz2 # times tar

We also counted the number of elapsed jiffies at the begining and at the
end of the brpm check security hook (which we do not use any longer in recent
DigSig versions). We run 30 times several binaries of different sizes (ls, ps,
busybox, cvs, vim, emacs...).

4.4 DigSig profiling

Finally, to assist us in optimizing our code, we have run Oprofile [9], a system
profiler for Linux, over DigSig (see Table 4). Results clearly indicate that the
modular exponentiation routines are the most expensive, so this is where we
should concentrate our optimization efforts for future releases. More particu-
larly, we plan (one day !) to port ASM code of math libraries to the kernel,
instead of using pure C code.

5 Tests

DigSig testcases have been added to the Linux Test Project [8]. They are
standalone, you do not need to build and compile the whole Linux Test Project.

CPU: CPU with timer interrupt, speed 2398.91 MHz (estimated)
Profiling through timer interrupt

vma samples % image name app name symbol name
00001150 401 42.5239 digsig verif.ko digsig verif mpihelp submul 1
00001090 198 20.9968 digsig verif.ko digsig verif mpihelp addmul 1
00000e90 109 11.5589 digsig verif.ko digsig verif dsi sha1 update
00002fa0 77 8.1654 digsig verif.ko digsig verif mpihelp divrem
00000fd0 32 3.3934 digsig verif.ko digsig verif mpihelp mul 1
00001300 27 2.8632 digsig verif.ko digsig verif mpihelp add n
00001290 15 1.5907 digsig verif.ko digsig verif mpihelp sub n

Table 4: OProfile report for DigSig.

Just retrieve the scripts in ltp/testcases/kernel/security/digsig. Then, retrieve
DigSig and put it in the ./digsig-latest directory. Run make all and sh test.sh.

So far, we have implemented the following tests:

• make sure it is impossible to write into an executable that is being run.

• make sure it is impossible to execute an executable that is open for write.

• modify byte per byte an executable and check its signature.

6 Contributors

• Axelle Apvrille Axelle Apvrille@nospam.yahoo.fr

• David Gordon - David.Gordon@ericsson.ca

• Serge Hallyn - serue@us.ibm.com

• Benoit Hamet

• Makan Pourzandi - Makan.Pourzandi@ericsson.ca

• Vincent Roy - Gaspoucho@yahoo.co

• Marco Slaviero

• Chris Wright

Please let us know if somebody’s missing...

References

[1] Wraight C., Securing your linux environment, Linux World, Vol 1, Issue
2, pages 48-51, November/December 2003..

[2] Tripwire, http://www.tripwire.com.

[3] Bsign, http://packages.qa.debian.org/b/bsign.html.

[4] Cryptomark, http://www.immunix.org/cryptomark.html.

[5] Van Doorn, L., Ballintijn, G., Arbaugh, W.A., Signed Executables for
Linux, January 2003..

[6] GnuPG, http://www.gnupg.org.

[7] LibTomCrypt, http://libtomcrypt.org.

[8] Linux Test Project, http://ltp.sf.net.

[9] OProfile, http://oprofile.sourceforge.net.

[10] Umbrella, http://umbrella.sourceforge.net.

[11] A. Apvrille, M. Pourzandi, D. Gordon, V. Roy, Stop Malicious Code Exe-
cution at Kernel Level, in Linux World, vol. 2, no. 1, January 2004.

[12] A. Apvrille, D. Gordon, S. Hallyn, M. Pourzandi, V. Roy, DigSig: Run-time
authentication of binaries at kernel level, in the Proceedings of the 18th
USENIX Large Installation System Administration Conference (LISA’04),
pp. 59-66, Atlanta, November 14-19, 2004.

[13] A. Apvrille, D. Gordon and the whole DigSig team, DigSig novelties, Libre
Software Meeting (LSM 2005), Security Topci, Dijon, France, July 4-9,
2005.

